Abstract:
Embodiments of the disclosure relate to an apparatus including a first sensor arrangement configured in a first layer; a second sensor arrangement configured in a second layer; wherein the sensor arrangements are configured to vary an input signal in response to a sensed parameter; and the apparatus also including an input configured to receive an input signal and an output configured to provide an output signal that depends on each of the first and second sensor arrangements.
Abstract:
An apparatus comprising a processor and memory including computer program code. The memory and computer program code can be configured to, with the processor, cause the apparatus to illuminate one or more sensor elements with electromagnetic radiation emitted from corresponding regions of an electronic display. The one or more sensor elements can be configured to exhibit a specific electrical response to the illumination when a specific set of analytes are bound to the one or more sensor elements, determine the electrical response of the one or more sensor elements, and compare the determined electrical response with one or more predetermined electrical responses to determine a match. Each predetermined electrical response can be associated with the binding of a different set of analytes, wherein determination of a match allows the specific set of analytes bound to the one or more sensor elements to be identified.
Abstract:
An apparatus includes a capacitance touch sensor arrangement configured to have a variable capacitance that varies when a conductive object approaches; and at least one variable impedance sensor configured to have a variable impedance that varies with a sensed parameter; an output node; and at least one switch configured to provide, in a first configuration, an output impedance at the output node that depends upon the variable capacitance and configured to provide, in a second configuration, an output impedance at the output node that depends upon the variable impedance.
Abstract:
An apparatus comprises an anode formed of graphene oxide from an acidic pH; a cathode from a pH greater than the acidic pH of the anode; and charge collectors deposited on the anode and the cathode. The anode comprises graphene oxide, the graphene oxide comprising an ink and having a pH of about 1 to about 4.
Abstract:
An apparatus 100 comprises a substrate 102 ; a sensing material 104 for example comprising one or more of a carbon foam, aluminium foam or a graphene foam, located on the substrate; a first pair of contacts 106 coupled to the sensing material and separated by a first distance 108; and a second pair of contacts 110 coupled to the sensing material and separated by a second distance 112, the second distance being greater than the first distance. The apparatus is configured to provide a first electrical property measurement, such as resistance, resistivity, current, current density, or voltage, between the first pair of contacts and to provide a second electrical property measurement between the second pair of contacts. The first and second electrical property measurements are used in determining an ambient temperature and/or a substrate temperature. Also disclosed is a controller for use with such an apparatus. The apparatus may be one or more of a mobile phone, a tablet computer, a laptop, a smart watch, personal digital assistant, or a digital camera, for example.
Abstract:
An apparatus comprising first and second electrodes (201, 202) separated by an electrolyte (203), the first and second electrodes (201, 202) configured to exhibit a potential difference therebetween on interaction of the first electrode (201) with an analyte, wherein the first electrode (201) is configured such that its electrical conductance and electrochemical potential are dependent upon the amount of analyte present, the electrical conductance and electrochemical potential of the first electrode (201) affecting the potential difference between the first and second electrodes (201, 202), and wherein the apparatus comprises respective first and second terminals (204, 205) configured for electrical connection to a readout circuit to enable determination of the presence and/or amount of analyte based on the potential difference.