Abstract:
Described herein are processes of making biocompatible water-soluble polymers conjugates. In particular, large scale processes of making poly(L-γ-glutamyl-glutamate) conjugates that can be useful for a variety of drug delivery applications are described herein.
Abstract:
This invention includes fusogenic compounds, and compositions and methods of use thereof. The fusogenic compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to incorporate or encapsulate active agents, to deliver and distribute the active agents to cells, tissues, organs, and subjects.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of human p21 using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. A nucleic acid molecule can have a) a polynucleotide sense strand and a polynucleotide antisense strand; b) each strand of the molecule being from 15 to 30 nucleotides in length; c) a contiguous region of from 15 to 30 nucleotides of the antisense strand being complementary to a sequence of an mRNA encoding p21; and d) at least a portion of the sense strand can be complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of human p21 using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. Provided are a range of siRNA structures, having one or more nucleotides being modified or chemically-modified. Advantageous structures include siRNAs with 2′-deoxy nucleotides located in the seed region, as well as other nucleotide modifications.
Abstract:
Described herein are methods of lowering the endotoxin content from a polyanionic polymer conjugate. In particular, methods of reducing the endotoxin content from a polyanionic polymer conjugate that can be useful for a variety of drug delivery applications are described herein.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of human p21 using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. Provided are a range of siRNA structures, having one or more nucleotides being modified or chemically-modified. Advantageous structures include siRNAs with 2′-deoxy nucleotides located in the seed region, as well as other nucleotide modifications.
Abstract:
This application relates generally to biocompatible water-soluble polymers with pendant functional groups and methods for making them, and particularly to polyglutamate amino acid conjugates that can include a linker to a compound that can include a drug, and their use for a variety of drug delivery applications, e.g., anticancer.
Abstract:
This application relates generally to biocompatible water-soluble polymers with pendant functional groups and methods for making them, and particularly to co-polymer polyglutamate amino acid conjugates useful for a variety of anti-cancer drug delivery applications.
Abstract:
This invention includes fusogenic compounds, and compositions and methods of use thereof. The fusogenic compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to incorporate or encapsulate active agents, to deliver and distribute the active agents to cells, tissues, organs, and subjects.
Abstract:
This invention includes fusogenic compounds, and compositions and methods of use thereof. The fusogenic compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to incorporate or encapsulate active agents, to deliver and distribute the active agents to cells, tissues, organs, and subjects.