Abstract:
The present invention relates to a transfer head and a method of manufacturing a micro LED display using the same. In particular, the present invention relates to a transfer head and a method of manufacturing a micro LED display using the same, the transfer head mounting normal micro LEDs on a display substrate without performing a complicated process of sorting out defective micro LEDs from the micro LEDs mounted on the display substrate and replacing the defective micro LEDs with normal micro LEDs.
Abstract:
A light engine for a light emitting element includes an element substrate on which a plurality of light emitting elements is mounted, a plurality of circuit substrates connected to one another in an insulated state in order to apply a drive voltage to the light emitting elements and connected to the element substrate in an insulated state, and a plurality of protection substrates configured to surround the element substrate and the circuit substrates and to make contact with the element substrate and the circuit substrates in an insulated state.
Abstract:
A chip substrate includes conductive portions, an insulation portion and a cavity. The conductive portions are laminated in one direction to constitute the chip substrate. The insulation portion is interposed between the conductive portions to electrically isolate the conductive portions. The cavity is formed on an upper surface of the chip substrate at a predetermined depth in a region including the insulation portion. The cavity is defined by a plurality of continuously-extending curved surfaces having predetermined radii of curvature.
Abstract:
The present invention relates to a substrate for an optical device, which is configured to connect an optical element substrate and an electrode substrate in a fitting manner, and simultaneously, to form one or more bridge pads which are insulated from the optical element substrate by a horizontal insulating layer, on the optical element substrate. The substrate for an optical device according to a first aspect of the present invention comprises: an optical element substrate which is made of a metal plate and contains a plurality of optical elements therein; a pair of electrode substrates which are made of an insulating material to form a conductive layer on at least a portion of the upper surface thereof, are connected to both side surfaces of the optical element substrate, respectively, and are wire-bonded to the electrodes of the optical elements; and a fitting means which is formed on the side surfaces of the electrode substrate and the optical element substrate to fit the optical element substrate and the electrode substrate. The substrate for an optical device according to a second aspect of the present invention comprises: an optical element substrate which is made of a metal plate and contains a plurality of optical elements therein; a pair of electrode substrates which are made of a metal material to be connected to both side surfaces of the optical element substrate, respectively, and are wire-bonded to the electrodes of the optical elements; a fitting means which is formed on the side surfaces of the electrode substrate and the optical element substrate to fit the optical element substrate and the electrode substrate; and a fitting-type vertical insulating layer which is interposed between the optical element substrate and the electrode substrate so as to be connected to the fitting means.
Abstract:
A chip package has a light shield for blocking the light radiated from the chip. The chip package includes: a chip substrate including a conductive portion and at least one insulating portion electrically separating the conductive portion; an optical device mounted on the chip substrate; a sealing portion sealing the upper surface of the chip substrate; an adhesive bonding the sealing portion to the chip substrate; and a light shield formed in the sealing portion and blocking the light of the optical device from entering into the adhesive.
Abstract:
A chip package has a light shield for blocking the light radiated from the chip. The chip package includes: a chip substrate including a conductive portion and at least one insulating portion electrically separating the conductive portion; an optical device mounted on the chip substrate; a sealing portion sealing the upper surface of the chip substrate; an adhesive bonding the sealing portion to the chip substrate; and a light shield formed in the sealing portion and blocking the light of the optical device from entering into the adhesive.
Abstract:
An optical device includes a metal substrate wherein at least one vertical insulation layer is formed from the upper to the lower surface; a metal plated layer formed on the upper surface of the metal substrate except for the vertical insulation layer; and an optical device chip bonded to one portion of the metal plated layer. One electrode of the optical device chip is electrically connected to a bonded surface of the metal plated layer, and the other electrode of the optical device chip is wire bonded to the other portion of metal plated layer. The optical device chip and a peripheral region thereof is shielded with a sealant, and at least one groove is formed on a partial surface of the metal plated layer so that a portion of the sealant is directly bonded to the metal substrate.
Abstract:
The present invention relates to a method for manufacturing an optical device, and to an optical device manufactured thereby, which involve using a substrate itself as a heat-dissipating plate, and adopting a substrate with vertical insulation layers formed thereon, such that electrode terminals do not have to be extruded out from a sealed space, and thus enabling the overall structure and manufacturing process for an optical device to be simplified.According to the present invention, a method for manufacturing a can package-type optical device comprises the steps of: (a) preparing a metal plate and a metal substrate with vertical insulation layers, wherein more than one vertical insulation layer crossing the substrate from the top surface to the bottom surface thereof are formed; (b) bonding the metal plate on the top surface of the metal substrate with vertical insulation layers; (c) forming a cavity on an intermediate product that has undergone step (b) in a form of a cylindrical pit having a predetermined depth reaching the surface of said metal substrate with vertical insulation layers by passing through said metal plate and the adhesive layers formed by said bonding, wherein said cavity contains said vertical insulation layer in the bottom wall thereof; (e) connecting a wire, which electrically connects an optical device and an electrode of the optical device together, to either side of the surface of the bottom wall of the vertical insulation layers of the cavity, respectively; and (g) sealing the cavity by means of a protective plate made from a light-transmitting material; and a can cap, formed as a picture frame whose top central portion and the bottom are open and encompassing the perimeter of the protective plate.
Abstract:
Disclosed are a piezoelectric material-based electronic device having high recognition precision for a three-dimensional shape and improved durability, and a manufacturing method thereof. The electronic device includes an anodic oxide film, a first electrode provided on an upper surface of the anodic oxide film, a second electrode provided on an a lower surface of the anodic oxide film, and a piezoelectric column made of a piezoelectric material and provided between the first electrode and the second electrode.
Abstract:
The present invention relates to a micro LED structure and a method of manufacturing the same. More particularly, the present invention relates to a micro LED structure and a method of manufacturing the same, the micro LED structure including: a micro LED; a circuit board driving the micro LED; and an anisotropic conductive anodic oxide film provided between the micro LED and the circuit board to electrically connect the circuit board and the micro LED. According to the present invention, without applying an external force (thermocompression bonding) to the anisotropic conductive anodic oxide film, it is possible to electrically connect the circuit board and the micro LED. In addition, it is possible to obtain characteristics such as uniform conductivity in a vertical direction and heat dissipation.