Abstract:
A chip substrate includes at least one insulation portion interposed between conductive portions. A cavity formed in a recessed shape from a region of an upper surface of the chip substrate exposes a top surface of a part of the at least one insulation portion. An insulation layer is coated on the upper surface of the chip substrate excluding the region of the cavity. A bump may be formed at a predetermined height within the cavity.
Abstract:
A chip substrate includes laminated conductive portions, and laminated insulation portions that electrically isolate the conductive portions, with a cavity in a recessed shape in a region including the insulation portions on an upper surface of the chip substrate. The substrate includes an insulation layer on the upper surface, excluding a region of the cavity, and a continuous plating layer along a periphery of the chip substrate on the insulation layer. A portion of a top surface of each insulation portion is exposed in the cavity, and another portion of the top surface of each insulation portion is coated with the insulation layer. A chip package includes a chip substrate, with an optical element sealed in the cavity by a sealing member or lens.
Abstract:
The present invention relates to a substrate for an optical device, which is configured to connect an optical element substrate and an electrode substrate in a fitting manner, and simultaneously, to form one or more bridge pads which are insulated from the optical element substrate by a horizontal insulating layer, on the optical element substrate. The substrate for an optical device according to a first aspect of the present invention comprises: an optical element substrate which is made of a metal plate and contains a plurality of optical elements therein; a pair of electrode substrates which are made of an insulating material to form a conductive layer on at least a portion of the upper surface thereof, are connected to both side surfaces of the optical element substrate, respectively, and are wire-bonded to the electrodes of the optical elements; and a fitting means which is formed on the side surfaces of the electrode substrate and the optical element substrate to fit the optical element substrate and the electrode substrate. The substrate for an optical device according to a second aspect of the present invention comprises: an optical element substrate which is made of a metal plate and contains a plurality of optical elements therein; a pair of electrode substrates which are made of a metal material to be connected to both side surfaces of the optical element substrate, respectively, and are wire-bonded to the electrodes of the optical elements; a fitting means which is formed on the side surfaces of the electrode substrate and the optical element substrate to fit the optical element substrate and the electrode substrate; and a fitting-type vertical insulating layer which is interposed between the optical element substrate and the electrode substrate so as to be connected to the fitting means.
Abstract:
A chip substrate includes at least one insulation portion interposed between conductive portions. A cavity formed in a recessed shape from a region of an upper surface of the chip substrate exposes a top surface of a part of the at least one insulation portion. An insulation layer is coated on the upper surface of the chip substrate excluding the region of the cavity. A bump may be formed at a predetermined height within the cavity.