Abstract:
PROBLEM TO BE SOLVED: To destine, for applications running on an electronic device, a majority of IP packets sent from an IP network over a wireless network to a mobile station which is tethered to the electronic device, such as a laptop computer. SOLUTION: Incoming IP packets to delineate only packets destined for mobile station applications are snooped and filtered. This greatly improves the processing efficiency of the mobile station. In particular, the CID fields of TCP/IP packets utilizing Van Jacobson compression techniques are snooped and filtered. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method and an apparatus for mitigating the impact of receiving unsolicited IP packets sent by a wireless device. SOLUTION: To initiate dormancy early, a wireless device receives the IP packet from a wireless network and determines whether the received IP packet is an unsolicited IP packet. The unsolicited IP packet may be declared if the received IP packet causes the wireless device to reactivate from dormancy or is not delivered to an application or service running at the wireless device. The wireless device transitions to dormancy early if the received IP packet is deemed to be the unsolicited IP packet and no other events prevent transition to dormancy. The wireless device may use a shortened value for an inactivity timer for a predetermined time duration if the unsolicited IP packet is detected and a nominal value for the inactivity timer thereafter. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for early determination of network support for mobile IP in a wireless communication system. SOLUTION: A mobile node is in communication with a wireless network. Then a test is performed for a disconnect condition. The disconnect condition is an early indication of network support for the mobile IP as identified by at least a requirement for authentication. Early indication relates to identification of the non-support for the mobile IP prior to or during network packet connection. If the disconnect condition is found, the mobile node disconnects from the wireless network. If the disconnect condition is not found, the mobile node is left connected to the wireless network. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus and method for preventing inadvertent operation of a manual input device. SOLUTION: A wireless communication device (100) includes a manual input device (120, 122), a key lock memory (108), and a key lock processor (104). The processor (104) accesses user-programmable parameters stored in the memory (108) that define conditions for automatically disabling and also enabling commands to be issued from the manual input device (120, 122). When the processor (104) determines that the disabling condition has been met, the manual input device (120, 122) is automatically disabled, and will remain disabled until the enabling condition is met. The wireless communication device (100) may further include a timer (130) to measure elapsed time, and a display (120) to show a label indicating the status of the manual input device (120, 122). COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A majority of the IP packets sent from an IP network over a wireless network to a mobile station which is tethered to an electronic device, such as a laptop computer, are destined for applications running on the electronic device. The embodiments are for snooping and filtering incoming IP packets to delineate only those packets destined for mobile station applications, which greatly improves the processing efficiency of the mobile station. In particular, the CID fields of TCP/IP packets utilizing Van Jacobson compression techniques are snooped and filtered.
Abstract:
Various embodiments provide systems and methods for connecting wireless-enabled products to wireless networks. Customer network credentials may be stored in a server along with a customer identifier ("customer ID") during one-time registration. When a wireless-enabled product is purchased, a product identifier ("product ID") and the customer's ID are forwarded to the server, which correlates the two identifiers, linking the purchased product to the customer. When the wireless-enabled product is powered on, the product accesses the server via a public network connection, and sends the product ID and a security token to the server. The server uses the product ID and the security token to authenticate the product. Once authenticated, the server uses the correlated customer ID to look up the network credentials for the customer's private network, and provides the network credentials to the wireless-enabled product. The wireless-enabled product then uses the downloaded credentials to access the customer's private network.
Abstract:
Techniques to efficiently filter fragmented datagrams and route fragments are described. For each fragmented datagram, a filtering node obtains filter parameters as fragments for the datagram are received. When all filter parameters are available, the node applies one or more filters on the filter parameters to obtain a filter result for the datagram and stores the filter result in an entry in a routing table. Prior to obtaining the filter result, the node stores all fragments received for the datagram in a memory. When the filter result becomes available, the node processes all fragments already received for the datagram in accordance with the filter result. As each remaining fragment for the datagram is received, the node immediately processes the fragment in accordance with the filter result. When the last fragment is received, the node clears the memory and the routing table entry for the datagram.
Abstract:
A system and method for performing mobile node registration. The system comprises a terminal device for transmitting packetized data, and a wireless communication device coupled to said terminal device for monitoring said packetized data for an Internet Protocol (IP) address contained in an IP address request. The wireless communication device initiates mobile node registration using said IP address if said IP address request is for a static IP address. The wireless communication device prevents the terminal device from sending or receiving packetized data when initiating mobile node registration, and allows said terminal device to send and received packetized data upon completion of mobile node registration. As a result, the mobile node registration occurs transparently to the terminal device, obviating the need for the terminal device to have its own Mobile IP support.
Abstract:
In a communication system in which a roaming node seeking network access among different networks which are implemented with different network interface layer protocols, handoff schemes are instituted whereby the node may freely move from one network to another with reduced levels of interruptions with respect to the network access. Prior to and at the onset of a handoff, the node receives an indication for the handoff. The indication may be embodied in various forms such as a signal message indicating a change of the SID (System Identification), NID (Network Identification), or PZID (Packet Zone Identification). Alternatively, the indication can be in the form of information straightforwardly included in a data packet sent to the roaming node prior to the handoff. As another alternative, the indication can be implemented as distinguishable message patterns sent to the node in which different message patterns can be sent by different networks supporting different network interface layer protocols.
Abstract:
A wireless communication device (100) includes a manual input device (120, 122), a key lock memory (108), and a key lock processor (104). The processor (104) accesses user-programmable parameters stored in the memory (108) that define conditions for automatically disabling and also enabling commands to be issued from the manual input device (120, 122). When the processor (104) determines that the disabling condition has been met, the manual input device (120, 122) is automatically disabled, and will remain disabled until the enabling condition is met. The wireless communication device (100) may further include a timer (130) to measure elapsed time, and a display (124) to show a label indicating the status of the manual input device (120, 122). The manual input device (120, 122) of the wireless communication device (100) may be either, or both, a conventional keypad (120) or a dual-function rotatable switch (122).