Abstract:
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date 04 October 2018 (04.10.2018) W I PO I PCT omit VIII °nolo H11E11111E111 IIII 1111111 ow (10) International Publication Number WO 2018/182926 Al (51) International Patent Classification: H04L 5/00 (2006.01) (21) International Application Number: PCT/US2018/020804 (22) International Filing Date: 03 March 2018 (03.03.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/479,055 30 March 2017 (30.03.2017) US 15/910,615 02 March 2018 (02.03.2018) US (71) Applicant: QUALCOMM INCORPORATED [US/US]; Attn: International IP Administration, 5775 Morehouse Dri- ve, San Diego, California 92121-1714 (US). (72) Inventors: SUN, Jing; 5775 Morehouse Drive, San Diego, California 92121-1714 (US). LUO, Tao; 5775 Morehouse Drive, San Diego, California 92121 (US). AKKARAKARAN, Sony; 5775 Morehouse Drive, San Diego, California 92121-1714 (US). MALIK, Rahul; 5775 Morehouse Drive, San Diego, California 92121-1714 (US). REDDY, Akula; 5775 Morehouse Drive, San Diego, Cal- ifornia 92121-1714 (US). KADOUS, Tamer Adel; 5775 Morehouse Drive, San Diego, California 92121-1714 (US). (74) Agent: KENT, Preston E. et al.; Patterson & Sheridan, L.L.P., 24 Greenway Plaza, Suite 1600, Houston, Texas 77046-2472 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. = (54) Title: CONTROL RESOURCE SET FOR SINGLE-CARRIER WAVEFORM 900 -902 DETERMINE A FIRST CONTROL RESOURCE SET (CORESET) OF TIME AND FREQUENCY RESOURCES WITHIN A CONTROL REGION OF SYSTEM BANDWIDTH, TO TRANSMIT A PHYSICAL DOWNLINK CONTROL CHANNEL (PDCCH) TO A USER EQUIPMENT (UE) 904 TRANSMIT THE PDCCH TO THE UE AS A SINGLE-CARRIER WAVEFORM VIA THE FIRST CORESET OF TIME AND FREQUENCY RESOURCES FIG. 9 (57) : Certain aspects of the present disclosure relate to communication systems, and more particularly, to a control resource set (coreset) for transmitting physical downlink control channels using a single-carrier waveform in communications systems operating according to new radio (NR) technologies. In an exemplary method, a base station may determine a first control resource set (coreset) of time and frequency resources within a control region of system bandwidth, to transmit a physical downlink control channel (PDCCH) to a user equipment (UE) and transmit the PDCCH to the UE as a single caner waveform via the first coreset of time and frequency resources. [Continued on next page] WO 2018/182926 Al O III (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3))
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may configure a first sub-band and a second sub-band of a system bandwidth for communication with a user equipment (UE). The base station may determine a spatial quasi co-location (QCL) relationship between the first sub-band and the second sub-band and may transmit signaling to the UE that indicates the determined spatial QCL relationship. Upon receiving the signaling, the UE may derive, based on the indicated spatial QCL relationship, spatial parameters (e.g., beam width, pointing angle, etc.) for communication with the base station via the second sub-band. The spatial parameters may be derived based on spatial parameters used for reception of a downlink transmission from the base station via the first sub-band. Subsequently, the UE may communicate with the base station via the second sub-band using the derived spatial parameters.
Abstract:
Un procedimiento, que comprende: recibir uno o más mensajes de descubrimiento (302; 304) en un primer nodo (320) de una red que comprende una pluralidad de nodos (320; 324; 326; 328), identificando el uno o más mensajes de descubrimiento (302; 304) al menos un nodo vecino (324) del primer nodo (320); emitir, mediante el primer nodo (320), un mensaje de consulta de topología (308); recibir, mediante el primer nodo (320), al menos un mensaje de respuesta (310) al mensaje de consulta de topología (308) desde al menos un nodo respondedor (324), incluyendo el al menos un mensaje de respuesta (310) datos que identifican cero o más nodos vecinos (326; 328) del al menos un nodo respondedor (324); emitir, mediante el primer nodo (320), uno o más mensajes de consulta de topología (312) a uno o más nodos vecinos (326; 328) identificados en el al menos un mensaje de respuesta (310); en el que el uno o más mensajes de descubrimiento (302; 304) incluyen un primer mensaje de descubrimiento (302) para un primer protocolo de descubrimiento de red y un segundo mensaje de descubrimiento (304) para un segundo protocolo de descubrimiento de red; en el que el primer mensaje de descubrimiento (302) y el segundo mensaje de descubrimiento (304) se emiten casi al mismo tiempo; y donde el primer nodo (320) comprende además inferir un tipo de puente (322) entre el al menos un nodo vecino (324) y el primer nodo (320) en función de la recepción del primer mensaje de descubrimiento (302) y la no recepción del segundo mensaje de descubrimiento (304).
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may configure a first sub-band and a second sub-band of a system bandwidth for communication with a user equipment (UE). The base station may determine a spatial quasi co-location (QCL) relationship between the first sub-band and the second sub-band and may transmit signaling to the UE that indicates the determined spatial QCL relationship. Upon receiving the signaling, the UE may derive, based on the indicated spatial QCL relationship, spatial parameters (e.g., beam width, pointing angle, etc.) for communication with the base station via the second sub-band. The spatial parameters may be derived based on spatial parameters used for reception of a downlink transmission from the base station via the first sub-band. Subsequently, the UE may communicate with the base station via the second sub-band using the derived spatial parameters.
Abstract:
Methods, systems, and devices are described for dealing with mutual clock drifts for communications over multiple RATs by maintaining a guard interval. A guard interval is a time interval during which no transmissions should occur. For example, the guard interval may be set relative to a scheduled interference interval of a STA so that transmissions to the STA from an AP will not collide with different RAT (
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for using a shortened block acknowledgement (BlockAck) frame capable of acknowledging fragments. Such a shortened BlockAck frame may include a bitmap field having a shorter length than that of a basic BlockAck frame in the IEEE 802.11 standard (i.e.,
Abstract:
Operations for a WLAN-capable remote control device and a controlled device are disclosed. A first network device (e.g., remote control) may receive a user input for controlling operation of a second network device (e.g., controlled device) of a communication network. The first network device may transition to an active operating state in response to receiving the user input. The first network device may transmit the first user input to the second network device. The first network device may exit the active operating state in response to successfully transmitting the first user input to the second network device.
Abstract:
Methods, systems, and devices are described that enable a WLAN access point (AP) to schedule packet transmissions to (or from) a mobile device taking into consideration the schedule of various other coexisting transmission/reception (Tx/Rx) activities on the mobile device. Various approaches may increase throughput at the mobile device. Various approaches also may benefit other stations associated with the same AP.