Abstract:
A system, apparatus and method for efficiently processing interrupts using general purpose registers in a pipelined processor. In accordance with the present disclosure, a register file may be updated to efficiently save an interrupt return address. When an interrupt request is received by the system's processor, or when the request is issued in the execution of a program, a pseudo-instruction is generated. This pseudo-instruction travels down the pipeline in the same way as other instructions and updates the register file by causing the register file to be written with the return address of the last instruction for which processing has not been completed.
Abstract:
An instruction cache system having a virtually tagged instruction cache which, from a software program perspective, operates as if it were a physically tagged instruction cache is disclosed. The instruction cache system also includes a means for address translation which is responsive to an address translation invalidate instruction and a control logic circuit. The control logic circuit is configured to invalidate an entry in the virtually tagged instruction cache in response to the address translation invalidate instruction.
Abstract:
A processor provides two-level interrupt servicing. In one embodiment, the processor comprises a storage device and an interrupt handler. The storage device is configured to store an interrupt identifier corresponding to an interrupt request. The interrupt handler is configured to recognize the interrupt request, initiate a common interrupt service routine responsive to recognizing the interrupt request and subsequently initiate an interrupt service routine corresponding to the stored interrupt identifier.
Abstract:
Semaphore (116) operation manages exclusive access to a memory (114) that is shared by a plurality of processing elements. Semaphore reservation status for exclusive access by a processing element is (102a), (102b) monitored by a memory controller. To clear an obsolete reservation status, a command signal is transmitted for a write operation to the memory while prohibiting update of the contents of a memory. The reservation status at the controller (104) is changed from a reservation state to a non-reservation state in response to receipt of the command signal.
Abstract:
In an instruction execution pipeline, the misalignment of memory access instructions is predicted. Based on the prediction, an additional micro-operation is generated in the pipeline prior to the effective address generation of the memory access instruction. The additional micro-operation accesses the memory falling across a predetermined address boundary. Predicting the misalignment and generating a micro-operation early in the pipeline ensures that sufficient pipeline control resources are available to generate and track the additional micro-operation, avoiding a pipeline flush if the resources are not available at the time of effective address generation. The misalignment prediction may employ known conditional branch prediction techniques, such as a flag, a bimodal counter, a local predictor, a global predictor, and combined predictors. A misalignment predictor may be enabled or biased by a memory access instruction flag or misaligned instruction type.
Abstract:
In a pipelined processor, a pre-decoder in advance of an instruction cache calculates the branch target address (BTA) of PC-relative and absolute address branch instructions. The pre-decoder compares the BTA with the branch instruction address (BIA) to determine whether the target and instruction are in the same memory page. A branch target same page (BTSP) bit indicating this is written to the cache and associated with the instruction. When the branch is executed and evaluated as taken, a TLB access to check permission attributes for the BTA is suppressed if the BTA is in the same page as the BIA, as indicated by the BTSP bit. This reduces power consumption as the TLB access is suppressed and the BTA/BIA comparison is only performed once, when the branch instruction is first fetched. Additionally, the pre-decoder removes the BTA/BIA comparison from the BTA generation and selection critical path.
Abstract:
In a pipelined processor where instructions are pre-decoded prior to being stored in a cache, an incorrectly pre-decoded instruction is detected during execution in the pipeline. The corresponding instruction is invalidated in the cache, and the instruction is forced to evaluate as a branch instruction. In particular, the branch instruction is evaluated as "mispredicted not taken" with a branch target address of the incorrectly pre-decoded instruction's address. This, with the invalidated cache line, causes the incorrectly pre-decoded instruction to be re-fetched from memory with a precise address. The re-fetched instruction is then correctly pre-decoded, written to the cache, and executed.
Abstract:
A method and apparatus for allowing an out-of-order processor to reuse an in- use physical register is disclosed herein. The method and apparatus uses identifiers, such as tokens and / or other identifiers in a rename map table (RMT) and a physical register file (PRF), to indicate whether an instruction result is allowed or disallowed to be written into a physical register.
Abstract:
An apparatus includes a primary hypervisor that is executable on a first set of processors and a secondary hypervisor that is executable on a second set of processors. The primary hypervisor may define settings of a resource and the secondary hypervisor may use the resource based on the settings defined by the primary hypervisor. For example, the primary hypervisor may program memory address translation mappings for the secondary hypervisor. The primary hypervisor and the secondary hypervisor may include their own schedulers.
Abstract:
Methods and systems to guard against attacks designed to replace authenticated, secure code with non-authentic, unsecure code and using existing hardware resources in the CPU's memory management unit (MMU) are disclosed. In certain embodiments, permission entries indicating that pages in memory have been previously authenticated as secure are maintained in a translation lookaside buffer (TLB) and checked upon encountering an instruction residing at an external page. A TLB permission entry indicating permission is invalid causes on-demand authentication of the accessed page. Upon authentication, the permission entry in the TLB is updated to reflect that the page has been authenticated. As another example, in certain embodiments, a page of recently authenticated pages is maintained and checked upon encountering an instruction residing at an external page.