Abstract:
This disclosure provides systems, methods and apparatus for purge gas delivery in an atomic layer deposition (ALD) processing apparatus. The ALD processing apparatus can include a processing chamber including a lid and a chamber wall. One or more process gas lines for delivering process gases are coupled to one or more process gas delivery sources in the processing chamber. An o-ring can be positioned proximate an outer edge of the processing chamber to provide a seal with the chamber wall and the lid. The lid is configured to open for removal of the substrate and close to process the substrate. A purge line for delivering purge gas is coupled to one or more purge gas delivery line sources in the processing chamber, and the purge gas delivery line sources are disposed between the o-ring and the one or more process gas delivery sources
Abstract:
This disclosure provides systems, methods and apparatus for providing illumination by using a light guide to distribute light. In an aspect, an illumination system is provided with a substrate having a first side and a second side opposite the first. The substrate can be optically transmissive and form part of the light guide for distributing light. The first side of the substrate is processed using a first processing technology. Processing the first side includes forming a light turning feature on the first side and forming a protective layer over the light turning feature. The second side is processed using a second processing technology to form display elements, while the protective layer protects the first side from damage. The first and second processing technologies can be performed using the same tool set. In addition to protecting the first side, the protective layer may function as an optical cladding and/or passivation layer.
Abstract:
This disclosure provides systems, methods, and apparatus for producing roughness in an electromechanical device by nucleation under plasma CVD conditions. In one aspect, a substrate and at least a first layer are provided. The disclosure further provides gas phase nucleating particles under plasma CVD conditions and depositing a first layer, where the particles are incorporated into the first layer to create roughness in the first layer. The roughness may be transferred to a second layer by conformal deposition of the second layer over the first layer. The roughness of the second layer corresponds to the roughness of the first layer, where the first layer has a roughness greater than or equal to about 20 Å root mean square (RMS).
Abstract:
A microelectromechanical systems (MEMS) device includes a substrate (20), an array region (ARRAY), and a peripheral region (INTERCONNECT). The array region (ARRAY) includes a lower electrode (16A, 16B), a movable upper electrode (14), and a cavity (19) between the lower electrode (16A, 16B) and the upper electrode (14). The peripheral region (INTERCONNECT) includes a portion of a layer forming the upper electrode (14) in the array region (ARRAY) and an electrical interconnect (58). The electrical interconnect (58) includes a conductive material (50) electrically connected to at least one of the lower electrode (16A, 16B) and the upper electrode (14). The electrical interconnect (58) is formed of a layer separate from and below the layer forming the upper electrode (14) in the array region (ARRAY). The conductive material (50) is selected from the group consisting of nickel, chromium, copper, and silver.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material that is selectively diffused with a dopant material or formed of a selectively oxidized metal sacrificial material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a diffused or oxidized sacrificial material.
Abstract:
This disclosure provides systems, methods and apparatus for fabricating electromechanical system devices within a plasma-etch reaction chamber. In one aspect, a plasma-etch system includes a plasma-etch reaction chamber, an inlet in fluid communication with the reaction chamber, a cathode positioned within the reaction chamber and a non-hollow anode positioned within the reaction chamber between the inlet and the cathode. The inlet is configured to introduce a process gas into the reaction chamber such that at least a portion of the process gas strikes an upper surface of the anode and is allowed to flow across the upper surface and around the edges of the anode. The anode can be a liner plate in place of a showerhead.
Abstract:
This disclosure provides systems, methods and apparatus for providing illumination by using a light guide to distribute light. In one aspect, a passivation layer is attached to the light guide of an illumination device. The passivation layer may be an optically transparent moisture barrier and may have a thickness and refractive index which allows it to function as an anti-reflective coating. The passivation layer may protect moisture-sensitive underlying features, such as metallized light turning features that may be present in the light guide. The light turning features may be configured to redirect light out of the light guide. In some implementations, the redirected light may be applied to illuminate a display.
Abstract:
The efficiency of an etching process may be increased in various ways, and the cost of an etching process may be decreased. Unused etchant may be isolated and recirculated during the etching process. Etching byproducts may be collected and removed from the etching system during the etching process. Components of the etchant may be isolated and used to general additional etchant. Either or both of the etchant or the layers being etched may also be optimized for a particular etching process.
Abstract:
Embodiments of the present invention relate to interferometric display devices comprising an interferometric modulator and a solar cell and methods of making thereof. In some embodiments, the solar cell is configured to provide energy to the interferometric modulator. The solar cell and the interferometric modulator may be formed above the same substrate. A layer of the solar cell may be shared with a layer of the interferometric modulator.
Abstract:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.