Abstract:
This disclosure provides systems, methods and apparatus for providing illumination by using a light guide to distribute light. In one aspect, the light guide includes a light turning film over an optically transmissive supporting layer. The light turning film may be formed of a material deposited in the liquid state. The light turning film may be formed of a photodefinable material, which may be glass, such a spin-on glass, or may be a polymer. In some other implementations, the glass is not photodefinable. The light turning film may have indentations that define light turning features and a protective layer may be formed over those indentations. The protective layer may also be formed of a glass material, such as spin-on glass. The light turning features in the light guide film may be configured to redirect light out of the light guide, for example, to illuminate a display.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A microelectromechanical systems device having an electrical interconnect between circuitry outside the device and at least one of an electrode (16) and a movable layer (14) within the device. At least a portion of the electrical interconnect is formed from the same material as a conductive layer between the electrode (14) and a mechanical layer (92) of the device. In an embodiment, this conductive layer is a sacrificial layer (60) that is subsequently removed to form a cavity (19) between the electrode (16) and the movable layer (14). The sacrificial layer (60) is preferably formed of molybdenum, doped silicon, tungsten, or titanium. According to another embodiment, the conductive layer is a movable reflective layer (14) that preferably comprises aluminum.
Abstract:
This disclosure provides systems, methods and apparatus for protecting electromechanical systems (EMS) devices from mechanical interference. In one aspect, an array of EMS devices may include one or more regions in which an EMS device is replaced with a spacer structure, such that the overall height of the spacer structure is greater than the height of the surrounding EMS devices. In another aspect, resilient spacer structures can be formed overlying stable portions of an EMS device array. These resilient spacer structures may be formed from a cross-linked organic material.
Abstract:
This disclosure provides systems, methods and apparatus for providing illumination by using light turning features (121) in a light guide (1010,120). In an aspect, an illumination system is provided with a light guide configured to support propagation of light along the length of the light guide. The light guide includes a light turning feature- formed by an indentation (1014) in the light guide. A coating layer (1015) is disposed along surfaces of the indentation and the volume of the indentation over the coating is filled with a filler (1035a). The filler substantially fills the indentation to an upper surface of the light turning feature and is spaced apart from the light guide. The light guide is configured to provide total internal reflection of light at the upper surface of the light guide. Light from a light source (130) can be injected into the light guide and then redirected by the turning features to illuminate a display (160).
Abstract:
This disclosure provides systems, processes, and apparatus implementing and using techniques for fabricating flexible integrated circuit (IC) device layers. In one implementation, a sacrificial layer is deposited on a substrate. The sacrificial layer can include amorphous silicon or molybdenum, by way of example. One or more electronic components are formed on the sacrificial layer. A polymer coating is provided on the one or more electronic components to define a coated device layer. The sacrificial layer is removed to release the coated device layer from the substrate. The sacrificial layer can be removed using a xenon difluoride gas or by etching, for example. Coated device layers made in accordance with this process can be stacked. The substrate can be formed of glass, silicon, a plastic, a ceramic, a compound semiconductor, and/or a metal, depending on the desired implementation. The electronic component(s) can include a passive component such as a resistor, an inductor, or a capacitor. The electronic component(s) can also or alternatively include an active component such as a transistor.
Abstract:
This disclosure provides systems, methods and apparatus for providing illumination by using a light guide to distribute light. In one aspect, the light guide includes a light turning film (128) over an optically transmissive supporting layer (129). In some implementations, the light turning film may be formed of a material deposited in the liquid state. In some implementations, the light turning film may be formed of a photodefinable material, which may be glass, such a spin-on glass, or may be a polymer. In some other implementations, the glass is not photodefinable. The light turning film may have indentations (131) that define light turning features and a protective layer may be formed over those indentations. The protective layer may also be formed of a glass material, such as spin-on glass. The light turning features in the light guide film may be configured to redirect light out of the light guide. In some implementations, the redirected light may be applied to illuminate a display.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
This disclosure provides systems, methods and apparatus for processing multiple substrates in a processing tool. An apparatus for processing substrates can include a process chamber, a common reactant source, and a common exhaust pump. The process chamber can be configured to process multiple substrates. The process chamber can include a plurality of stacked individual subchambers. Each subchamber can be configured to process one substrate. The common reactant source can be configured to provide reactant to each of the subchambers in parallel. The common exhaust pump can be connected to each of the subchambers.
Abstract:
This disclosure provides systems and methods for thin film switching devices, such as thin film transistors and thin film diodes, which are integrated in a display apparatus. In one aspect, a thin film switching device is positioned on a rear side of an electromechanical systems (EMS) display element formed over a substrate and is in electrical communication with the EMS display element. In another aspect, the thin film switching device is positioned between the EMS display element and the substrate. A planar layer is disposed between the EMS display element and the thin film switching device, with the planar layer having a planar surface.