Abstract:
A light detection and ranging system includes a transmitter transmitting a transmitted light pulse timing sequence, with pseudo-random timing and including a plurality of light pulses, toward a target. An optical receiver receives a reflected light pulse timing sequence including a plurality of light pulses from the target. An electronic control unit identifies a time delay between the transmitted light pulse timing sequence and the reflected light pulse timing sequence as a function of a correlation between the transmitted and reflected light pulse timing sequences.
Abstract:
A LADAR has adjustable operational parameters to accommodate surveillance of a particular site. The LADAR includes a controller, a laser source governed by the controller to generate a laser beam pulsed at a pulse repetition rate, an optical scanner, a first set of optics, a first drive assembly governed by the controller, a second drive assembly governed by the controller, a light detector, a second set of optics for guiding laser echo pulses, and a processor coupled to the light detector to accommodate surveillance of the particular site.
Abstract:
A block arrangement of optical elements is provided for use as a transmitter/receiver for a light detection and ranging (LIDAR) system. The block arrangement comprises:
a plurality of glass modules aligned together as a block to form a plurality of optical paths therein and secured together to maintain said alignment; a collimated light source secured to said block for generating a coherent beam of light over at least one optical path in said block which guides said coherent beam of light to an exit point of said block; and a light detector secured to said block.
The block serves for receiving a return coherent beam of light and is configured to conduct said return coherent beam of light to the light detector over at least one other optical path formed in said block.
Abstract:
A light detection and ranging system includes a mirror unit rotating around a scan axis. The mirror unit includes a receiving portion and a transmitting portion offset by an angle about the scan axis relative to a surface plane of the receiving portion. Respective centroids of the receiving and transmitting portions are positioned at a common point on the scan axis while the receiving and transmitting portions rotate around the scan axis. A transmitter transmits a light pulse toward the mirror unit. The transmitting portion is positioned to reflect the light pulse toward a target. A receiver is positioned to reflect the light pulse reflected from the target toward the receiver. The angle offset compensates for a change between a cone of illumination of the transmitting portion and a field-of-view of the receiving portion resulting from the rotation of the mirror unit.
Abstract:
A method of identifying an object in a laser beam illuminated scene based on material types comprises the steps of: emitting a pulsed beam of laser energy, each beam pulse comprising a plurality of different discrete wavelength emission components; illuminating a predetermined scene with the pulsed beam; receiving return laser pulses from objects within the illuminated scene, each return laser pulse comprising return components corresponding to the plurality of different discrete wavelength emission components; determining spectral reflectance values for the plurality of return components of each return laser pulse; determining a material type for each return laser pulse of the illuminated scene based on the plurality of reflectance values of the corresponding return pulse; indexing each determined material type to a position in the illuminated scene; and identifying an object in the illuminated scene based on material types and indexed positions thereof in the scene. A counterpart system for carrying out the method is also disclosed.
Abstract:
A LIDAR system for measuring flow velocity in three axes comprises: a LIDAR arrangement of optical elements for generating a coherent beam of light and directing the coherent beam of light by at least one rotationally operated optical element from the system with a predetermined pattern, the at least one rotationally operated optical element also for receiving reflections from particles along the predetermined pattern and directing the beam reflections to a light detector which converts the beam reflections into representative electrical signals; and a processor for detecting bursts from the electrical signals which are representative of light beam reflections from at least one particle substantially at a corresponding position along the predetermined pattern, and for computing a Doppler frequency for each of a selected plurality of detected bursts from the signal content thereof. The processor also capable of associating the selected plurality of detected bursts with their corresponding positions along the predetermined pattern and for computing a three axis flow velocity measurement from at least three of the selected plurality of computed Doppler frequencies and their corresponding positions along the predetermined pattern. A method of measuring flow velocity in three axes is further disclosed.
Abstract:
A laser radar (LADAR) has adjustable operational parameters to accommodate surveillance of a particular site. The LADAR comprises: a controller operative to adjust operational parameters of said LADAR to accommodate surveillance of said particular site; a laser source governed by said controller to generate a laser beam pulsed at an adjustable pulse repetition rate; an optical scanner; a first set of optics for guiding said pulsed laser beam from said laser source to said optical scanner; a first drive assembly governed by said controller for operating said optical scanner to direct said pulsed laser beam through an adjustable elevation field of regard; a second drive assembly governed by said controller for operating said optical scanner to direct said pulsed laser beam through multiple azimuth fields of regard during said scan of the elevation field of regard, said pulsed laser beam being scanned through each azimuth field of regard at an adjustable single azimuth field of regard scan time; a light detector; a second set of optics for guiding laser echo pulses returned from said azimuth and elevation fields of regard to said light detector which converts said laser echo pulses into electrical echo pulses representative thereof; and a processor coupled to said light detector for receiving said electrical echo pulses and operative to process said electrical echo pulses to generate a range map of the combined azimuth and elevation fields of regard to accommodate surveillance of particular site.
Abstract:
A method for determining a range to a target comprises rotating a mirror unit around a scan axis. A light pulse is reflected off of a transmitting portion of the mirror unit toward the target. A light pulse, received from the target, is reflected off of a receiving portion of the mirror unit toward a receiver. The method includes compensating for a lag angle, caused by the rotation of the mirror unit around the axis, between the time the light pulse is reflected from the transmitting portion and the time the received light pulse is reflected from the receiving portion. The compensation includes angularly offsetting the transmitting portion about the scan axis from a surface plane of the receiving portion.