Abstract:
An airborne multiple field-of-view water droplet sensor includes an illumination portion and a detection portion. The illumination portion includes a first optical beam emitter configured to output a light beam. The detection portion includes a kaleidoscope configured to channel a first portion of the backscattered light towards an inner reflective surface of a circle-to-line converter, a multiple field of view subsystem having at least a first detector configured to receive light reflected by the circle-to-line converter, and a single field-of-view subsystem configured to receive a second portion of the backscattered light, the second portion not having been reflected by the circle-to-line converter. The single field-of-view subsystem may include a dual channel circular polarization detector for distinguishing between liquid water droplets and ice crystals based on information in the single field-of-view.
Abstract:
A device for optically detecting and distinguishing airborne liquid water droplets and ice crystals includes an illumination portion and a detection portion. The illumination portion (312) outputs a circularly polarized illuminating beam (318). The detection portion receives circularly polarized backscattered light from moisture in the cloud, in response to the illuminating beam. The circularly polarized backscattered light (322) is passed through a circular polarizer (333) to convert it into linearly polarized backscattered light, which is split into two components. Each of the two components is optionally subject to further linear polarization to filter out any leakage-type orthogonal polarization. The two components are then optically detected and the resulting detection signals are used to calculate one or more parameters reflective of the presence or absence of airborne ice crystals and/or water droplets.
Abstract:
A LADAR has adjustable operational parameters to accommodate surveillance of a particular site. The LADAR includes a controller, a laser source governed by the controller to generate a laser beam pulsed at a pulse repetition rate, an optical scanner, a first set of optics, a first drive assembly governed by the controller, a second drive assembly governed by the controller, a light detector, a second set of optics for guiding laser echo pulses, and a processor coupled to the light detector to accommodate surveillance of the particular site.
Abstract:
A block arrangement of optical elements is provided for use as a transmitter/receiver for a light detection and ranging (LIDAR) system. The block arrangement comprises:
a plurality of glass modules aligned together as a block to form a plurality of optical paths therein and secured together to maintain said alignment; a collimated light source secured to said block for generating a coherent beam of light over at least one optical path in said block which guides said coherent beam of light to an exit point of said block; and a light detector secured to said block.
The block serves for receiving a return coherent beam of light and is configured to conduct said return coherent beam of light to the light detector over at least one other optical path formed in said block.
Abstract:
A distributed laser based obstacle awareness system for use on-board an aircraft comprises: a plurality of obstacle detecting sensors disposable at a corresponding plurality of locations of the aircraft for emitting laser energy from the aircraft into a predetermined region of space and for receiving return laser energy from an obstacle in the predetermined region of space; a laser source for emitting a laser beam along an optical path; and a plurality of bistatic optical channels. Each channel comprises a plurality of transmission fiber optic cables and at least one receiver fiber optic cable and extends from the laser source to a corresponding obstacle detecting sensor of the plurality to direct the laser beam from the optical path to its corresponding obstacle detecting sensor of the plurality for emission into the corresponding predetermined region of space; and a light detector. Return laser energy from an obstacle received by any one of the obstacle detecting sensors is propagated through the receiver fiber optic cable of the corresponding optical channel to the light detector for use in detection of the obstacle in the corresponding predetermined region of space. In one embodiment, an optical switch is disposed in the optical path to redirect the laser beam in a time sequence manner from the optical path to selected optical channels of the plurality.
Abstract:
An airborne multiple field-of-view water droplet sensor includes an illumination portion and a detection portion. The illumination portion includes a first optical beam emitter configured to output a light beam. The detection portion includes a kaleidoscope configured to channel a first portion of the backscattered light towards an inner reflective surface of a circle-to-line converter, a multiple field of view subsystem having at least a first detector configured to receive light reflected by the circle-to-line converter, and a single field-of-view subsystem configured to receive a second portion of the backscattered light, the second portion not having been reflected by the circle-to-line converter. The single field-of-view subsystem may include a dual channel circular polarization detector for distinguishing between liquid water droplets and ice crystals based on information in the single field-of-view.
Abstract:
A light detection and ranging system includes a mirror unit rotating around a scan axis. The mirror unit includes a receiving portion and a transmitting portion offset by an angle about the scan axis relative to a surface plane of the receiving portion. Respective centroids of the receiving and transmitting portions are positioned at a common point on the scan axis while the receiving and transmitting portions rotate around the scan axis. A transmitter transmits a light pulse toward the mirror unit. The transmitting portion is positioned to reflect the light pulse toward a target. A receiver is positioned to reflect the light pulse reflected from the target toward the receiver. The angle offset compensates for a change between a cone of illumination of the transmitting portion and a field-of-view of the receiving portion resulting from the rotation of the mirror unit.