Abstract:
A transmitter (22) in a process control loop (34) includes a sensor (40) for sensing a process variable. An analog-to-digital converter (42, 44) coupled to the sensor (40) provides a digitized process variable at various sample times. An interface (54) couples the transmitter to the control loop (34) and is used for communicating information and receiving power over the control loop (34). The transmitter (22) includes a clock (52) and a memory (50). A microprocessor (48) coupled to the clock (52) and the memory (50) stores digitized process variables and clock information in the memory (50). The storage is such that the sample time of a stored digitized process variable can be determined.
Abstract:
A pressure transmitter (10) includes an isolator mounting assembly (12, 150) for isolating process fluid from an interior cavity (22) of the pressure transmitter (10). The isolator mounting assembly (12, 150) includes an isolator plug (66, 152) for receiving the process fluid line pressure and coupling the line pressure to a sensor cavity (32) formed by a header (68, 154) joined to a distal end of the plug (66, 152). A ring member (70) is attached to the header (68, 154) and the distal end of the plug (66, 152) to reinforce the joint formed between the isolator plug (66, 152) and the header (68, 154). In another embodiment, the isolator mounting assembly (150) includes a base (154) and a support (181) having first and second opposed ends (190, 202). The first end (190) is rigidly bonded to the pressure sensor (184) while an epoxy joint (200) joins the second end (202) of the support (181) to the base (154).
Abstract:
A two-wire transmitter (2) senses differential pressure, absolute pressure, and process temperature of a process fluid. The information can be used to provide an output representative of mass flow through a pipe (4). The transmitter (2) has an electronics module housing (14) attached to a sensor module housing (16).
Abstract:
Couche mince métallique (58) liant la surface de liaison à semiconducteurs (54, 56) d'une couche diaphragme (50) à la surface de liaison en céramique (44) d'un bloc support à module élevé (40). Cet agencement protège un diaphragme capteur de pression (60) des contraintes indésirables et en améliore la précision. Un passage (48) traversant le bloc support (40) couple la pression fluidique au diaphragme capteur (60) pour le faire dévier. Un couplage capacitif entre le diaphragme (60) et une plaque de condensateur (47) sur le bloc support (40) détecte la déviation et produit un signal de sortie représentant la pression.