Abstract:
A radiation detector device is disclosed that includes a photosensor and a scintillator coupled to the photosensor. The scintillator includes a scintillator crystal having a first end proximal to the photosensor, a second end distal from the photosensor, and a length extending between the proximal end and the distal end. The scintillator also includes a reflector substantially surrounding the scintillator crystal at least along its length. The reflector comprises a fabric that includes a plurality of fibers, each fiber comprising an inorganic material.
Abstract:
A method of assembling a detector includes conditioning a rare-earth halide scintillator crystal in a sealed container, wherein the conditioning process includes heating the scintillator crystal, reducing the pressure within the sealed container for an evacuation period while heating, and flowing a purging gas through the sealed container for a flowing duration while heating. The method further includes assembling a detector comprising the scintillator crystal in an assembly environment comprising an inert gas.
Abstract:
A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt.%. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
Abstract:
A radiation detection system can include a scintillator that is capable of emitting scintillating light in response to capturing different types of targeted radiation, a photosensor optically coupled to the scintillator, and a control module electrically coupled to the photosensor. The control module can be configured to analyze state information of the radiation detection system, and select a first technique to determine which type of targeted radiation is captured by the scintillator, wherein the first technique is a particular technique of a plurality of techniques to determine which type of targeted radiation was captured by the scintillator, and the selection is based at least in part on the analysis. In an embodiment, the radiation detection system can be used to change from one technique to another in real time or near real time to allow the radiation detection system to respond to changing conditions.
Abstract:
A scintillator device includes a polymeric polymer matrix, a neutron sensing particulate material dispersed within the polymer matrix, and a scintillating particulate material dispersed within the polymer matrix. In an embodiment, the neutron sensing particulate material has an average characteristic length of not greater than about 3 microns. The scintillating particulate material has an average characteristic length of at least about 16 microns. In another embodiment, a ratio of the average characteristic length of the scintillating particulate material to the average characteristic length of the neutron sensing particulate material is at least about 55. In a further embodiment, an energy deposited in the scintillating particulate material by a positively charged particle is at least about 1.25 MeV.
Abstract:
A radiation detection system can include a first scintillator having a first edge extending between a first surface and a second surface of the first scintillator. The radiation detection system can also include a second scintillator having a second edge extending between a third surface and a fourth surface of the second scintillator. The first edge of the first scintillator can be coupled to the second edge of the second scintillator. In a particular embodiment, a first portion of the first scintillator and a second portion of the second scintillator can both lie along a line that is perpendicular to the first surface of the first scintillator. In another embodiment, an optical coupling material can be coupled between the first edge and the second edge.
Abstract:
A radiation detector device is disclosed and includes a scintillation device having a scintillator crystal. The radiation detector device also includes a photosensor. Further, the radiation detector device includes an optical interface coupled between the scintillation device and the photosensor. The optical interface is electrically conductive.
Abstract:
A rare-earth halide material comprising a first surface region having a first surface roughness (Rrms1) and a second surface region having a second surface roughness (Rrms2), wherein the first surface roughness value is at least about 10% less than the second surface roughness value, wherein surface roughness is measured using scanning white light interferometry over an area of 1 mm2.
Abstract:
In an embodiment, scintillator can have a Figure of Merit of 0.4 at a temperature greater than 120° C., a Figure of Merit of at least 0.05 at a temperature of at least 160° C., or both. In another embodiment, a scintillator can include a Br-containing or an I-containing elpasolite. Either scintillator can be used in a radiation detection apparatus that include a photosensor and a radiation detection apparatus. Such an apparatus can be used to detect and discriminate two different types of radiation over a wide range of temperatures. The radiation detection apparatus can be useful in drilling, well logging, or as a portal detector.
Abstract:
A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.