Abstract:
A scintillator device includes a polymeric polymer matrix, a neutron sensing particulate material dispersed within the polymer matrix, and a scintillating particulate material dispersed within the polymer matrix. In an embodiment, the neutron sensing particulate material has an average characteristic length of not greater than about 3 microns. The scintillating particulate material has an average characteristic length of at least about 16 microns. In another embodiment, a ratio of the average characteristic length of the scintillating particulate material to the average characteristic length of the neutron sensing particulate material is at least about 55. In a further embodiment, an energy deposited in the scintillating particulate material by a positively charged particle is at least about 1.25 MeV.
Abstract:
A radiation detection system can include optical fibers and a material disposed between the optical fibers. In an embodiment, the material can include a fluid, such as a gas, a liquid, or a non-Newtonian fluid. In another embodiment, the material can include an optical coupling material. In a particular embodiment, the optical coupling material can include a silicone rubber. In still another embodiment, the optical coupling material has a refractive index less than 1.50. In still another embodiment, the radiation detection system can have a greater signal:noise ratio, a light collection efficiency, or both as compared to a conventional radiation detection system. Corresponding methods of use are disclosed that can provide better discrimination between neutrons and gamma radiation.
Abstract:
In one aspect a scintillation array includes a transparent material between portions of adjacent scintillation pixels. The transparent material can allow light to pass from one scintillation pixel to an adjacent scintillation pixel. The resulting image provides information regarding the depth at which a scintillation event occurs. Another aspect regards a scintillation array that includes reflector strips separating portions of adjacent scintillation pixels. Other spaces between portions of scintillation pixels need not include reflector strips and may be filled with other reflective material.
Abstract:
A radiation detector device is disclosed and includes a photosensor and a scintillation device coupled to the photosensor. The scintillation device includes a scintillator crystal enclosed within a casing. The scintillator crystal is optically coupled to a window at an end of the casing. The scintillation device includes a dielectric gas inside at least part of the casing. The dielectric gas is adapted to reduce or prevent static discharge within the scintillation device.
Abstract:
A radiation detection system can include a photosensor to receive light from a scintillator via an input and to send an electrical pulse at an output in response to receiving the light. The radiation detection system can also include a pulse analyzer that can determine whether the electrical pulse corresponds to a neutron-induced pulse, based on a ratio of an integral of a particular portion of the electrical pulse to an integral of a combination of a decay portion and a rise portion of the electrical pulse. Each of the integrals can be integrated over time. In a particular embodiment, the pulse analyzer can be configured to compare the ratio with a predetermined value and to identify the electrical pulse as a neutron-induced pulse when the ratio is at least the predetermined value.
Abstract:
A detection device includes a photon sensor and a scintillator device optically coupled to the photon sensor. The scintillator device includes a scintillator material having a first refractive index, a first refractive material in a first annular space around the scintillator material, and a second refractive material in a second annular space around the first annular space. The first refractive material has a second refractive index. The second refractive index is less than the first refractive index. The second refractive material has a third refractive index. The third refractive index is less than the second refractive index.
Abstract:
A rare-earth halide material comprising a first surface region having a first surface roughness (Rrms1) and a second surface region having a second surface roughness (Rrms2), wherein the first surface roughness value is at least about 10% less than the second surface roughness value, wherein surface roughness is measured using scanning white light interferometry over an area of 1 mm2.
Abstract:
A radiation detector device is disclosed and includes a scintillation device having a scintillator crystal. The radiation detector device also includes a photosensor. Further, the radiation detector device includes an optical interface coupled between the scintillation device and the photosensor. The optical interface is electrically conductive.
Abstract:
A radiation detection system can include optical fibers and a material disposed between the optical fibers. In an embodiment, the material can include a fluid, such as a gas, a liquid, or a non-Newtonian fluid. In another embodiment, the material can include an optical coupling material. In a particular embodiment, the optical coupling material can include a silicone rubber. In still another embodiment, the optical coupling material has a refractive index less than 1.50. In still another embodiment, the radiation detection system can have a greater signal:noise ratio, a light collection efficiency, or both as compared to a conventional radiation detection system. Corresponding methods of use are disclosed that can provide better discrimination between neutrons and gamma radiation.
Abstract:
An aspect of the present disclosure relates to a scintillation reflector that may include a specular material having a first and second surface, and a first diffuse material arranged adjacent to the first surface of the specular material and proximal to the scintillator surface. The composite reflector may surround at least a portion of a scintillator surface as provided in scintillation detector.