Abstract:
An imaging system may include an image sensor die, which may be backside illuminated (BSI). A light shielding layer and a conductive layer may be formed in the image sensor die. First and second portions of the conductive layer may be electrically isolated, so that the second conductive portion may be coupled to other power supply signals through a bond pad region, while the light shield may be shorted to ground. Optionally, the first and second portions may both be coupled to ground. The light shield may also be shorted through the bond pad region in a continuous conductive layer. A through oxide via may be formed in the image sensor die to couple metal interconnect structures to the conductive layer. Color filter containment structures may be formed over active image sensor pixels on the image sensor die, which may be selectively etched to improve planarity.
Abstract:
An image sensor may have a pixel array, and the pixel array may include a plurality of image pixels that gather image data and a plurality of phase detection pixels that gather phase information. The phase detection pixels may be arranged in phase detection pixel blocks, and each phase detection pixel group may include edge pixels. The edge pixels of each phase detection pixel group may be covered by microlenses that also cover a portion of a center pixel. The pixel array may also include high dynamic range pixel blocks. Each high dynamic range pixel block may include pixels within the phase detection pixel block and other pixels (e.g., corner pixels). A subset of the plurality of image pixels in the pixel array may be arranged in pixel blocks. Each pixel block may include a phase detection pixel block and a high dynamic range pixel block.
Abstract:
An array of color filter elements may be formed over an array of photodiodes in an integrated circuit for an imaging device using a carrier substrate. The carrier substrate may have a planar surface with a release layer. A layer of color filter material may be applied to the release layer. The carrier substrate may then be flipped and the layer of color filter material may be bonded to the integrated circuit. Heat may be applied to activate the release layer and the carrier substrate may be removed at the interface between the release layer and the color filter material. The layer of color filter material may be patterned either before bonding the layer of color filter material or after the carrier substrate is removed. A layer of microlenses may be formed over the array of color filter elements using a carrier substrate.
Abstract:
An imaging device may include a plurality of single-photon avalanche diode (SPAD) pixels. The SPAD pixels may be overlapped by square toroidal microlenses to direct light incident on the pixels onto photosensitive regions of the pixels. The square toroidal microlenses may be formed as first and second sets of microlenses aligned with every other SPAD pixel and may allow the square toroidal microlenses to be formed without gaps between adjacent lenses. Additionally or alternatively, a central portion of each square toroidal microlenses may be filled by a fill-in microlens. Together, the square toroidal microlenses and the fill-in microlenses may form convex microlenses over each SPAD pixel. The fill-in microlenses may be formed from material having a higher index of refraction than material that forms the square toroidal microlenses.
Abstract:
An imaging system may include an image sensor, a lens, and layers with reflective properties, such as an infrared cut-off filter, between the lens and the image sensor. The lens may focus light from an object in a scene onto the image sensor. Some of the light directed onto the image sensor may form a first image on the image sensor. Other portions of the light directed onto the image sensor may reflect off of the image sensor and back towards the layers with reflective properties. These layers may reflect the light back onto the image sensor, forming a second image that is shifted relative to the first image. Depth mapping circuitry may compare the first and second images to determine the distance between the imaging system and the object in the scene.
Abstract:
An image sensor may include high dynamic range imaging pixels having an inner sub-pixel surrounded by an outer sub-pixel. To steer light away from the inner sub-pixel and towards the outer sub-pixel, the high dynamic range imaging pixels may be covered by a toroidal microlens. To mitigate cross-talk caused by high-angled incident light, various microlens arrangements may be used. A toroidal microlens may have planar portions on its outer perimeter. A toroidal microlens may be covered by four additional microlenses, each additional microlens positioned in a respective corner of the pixel. Each pixel may be covered by four microlenses in a 2×2 arrangement, with an opening formed by the space between the four microlenses overlapping the inner sub-pixel.
Abstract:
A semiconductor wafer has a plurality of non-rectangular semiconductor die with an image sensor region. The non-rectangular semiconductor die has a circular, elliptical, and shape with non-linear side edges form factor. The semiconductor wafer is singulated with plasma etching to separate the non-rectangular semiconductor die. A curved surface is formed in the image sensor region of the non-rectangular semiconductor die. The non-rectangular form factor effectively removes a portion of the base substrate material in a peripheral region of the semiconductor die to reduce stress concentration areas and neutralize buckling in the curved surface of the image sensor region. A plurality of openings or perforations can be formed in a peripheral region of a rectangular or non-rectangular semiconductor die to reduce stress concentration areas and neutralize buckling. A second semiconductor die can be formed in an area of the semiconductor wafer between the non-rectangular semiconductor die.
Abstract:
An image sensor may include a pixel array with high dynamic range functionality and phase detection pixels. The phase detection pixels may be arranged in phase detection pixel groups. Each phase detection pixel group may include three adjacent pixels arranged consecutively in a line. A single microlens may cover all three pixels in the phase detection pixel group, or two microlenses may combine to cover the three pixels in the phase detection pixel group. The edge pixels in each phase detection pixel group may have the same integration time and the same color. The middle pixel in each phase detection pixel group may have the same or different color as the edge pixels, and the same or different integration time as the edge pixels. Phase detection pixel groups may also be formed from two pixels that each are 1.5 times the size of neighboring pixels.
Abstract:
A semiconductor device may include an array of single-photon avalanche diode pixels. The single-photon avalanche diode (SPAD) pixels may be capable of detecting a single photon. To improve dynamic range, a light attenuating layer may be incorporated into the semiconductor device. The light attenuating layer may selectively attenuate the incident light that passes to select SPAD pixels according to a known ratio. Processing circuitry in the system can determine that, for every photon detected by a SPAD pixel receiving attenuated light, more incident photons were actually received in accordance with the ratio. In this way, high photon fluxes may accurately be detected. SPAD pixels covered by a light attenuating element with low attenuation may be sensitive to low incident light levels. SPAD pixels covered by a light attenuating element with high attenuation may be sensitive to high incident light levels.
Abstract:
An image sensor may include pixels having nested sub-pixels. A pixel with nested sub-pixels may include an inner sub-pixel that has either an elliptical or a rectangular light collecting area. The inner sub-pixel may be formed in a substrate and may be immediately surrounded by a sub-pixel group that includes one or more sub-pixels. The inner sub-pixel may have a light collecting area at a surface that is less sensitive than the light collecting area of the one or more outer sub-pixel groups. Microlenses may be formed over the nested sub-pixels, to direct light away from the inner sub-pixel group to the outer sub-pixel groups in nested sub-pixels. A color filter of a single color may be formed over the nested sub-pixels. Hybrid color filters having a single color filter region over the inner sub-pixel and a portion of the one or more outer sub-pixel groups may also be used.