Abstract:
An article including a coating and a process including an article with a coating are disclosed. The article includes an aluminum-containing substrate including, by weight, at least 95% aluminum, and a coated and stabilized surface on the aluminum-containing substrate, the coated and stabilized surface being applied by thermal chemical vapor deposition at a temperature of less than 600° C. The process includes transporting fluid along a coated and stabilized surface positioned on an aluminum-containing substrate.
Abstract:
Thermal chemical vapor deposition products and processes are disclosed. The products include a ceramic substrate and a non-porous surface on the ceramic substrate, the non-porous surface including a ceramic material. The process includes transporting fluid along a non-porous surface, the non-porous surface being positioned on a ceramic substrate and being a thermal chemical vapor deposition coating.
Abstract:
A delivery device, manufacturing system, and process of manufacturing are disclosed. The delivery device includes a feed tube and a chemical vapor deposition coating applied over an inner surface of the feed tube, the chemical vapor deposition coating being formed from decomposition of dimethylsilane. The manufacturing system includes the delivery device and a chamber in selective fluid communication with the delivery device. The process of manufacturing uses the manufacturing system to produce an article.
Abstract:
De-icing processes and products with coatings enabling de-icing are disclosed. The de-icing process includes mechanically removing ice from a coated article having a chemical vapor deposition coating. The chemical vapor deposition coating includes silicon, carbon, and fluorine. The chemical vapor deposition coating is hydrophobic and oleophobic. The chemical vapor deposition coating remains hydrophobic and oleophobic after the mechanically removing of the ice. The product is a coated article having a chemical vapor deposition coating and ice on the chemical vapor deposition coating. The chemical vapor deposition coating includes silicon, carbon, and fluorine. The chemical vapor deposition coating is hydrophobic and oleophobic. The chemical vapor deposition coating remains hydrophobic and oleophobic in response to mechanically removing of the ice on the chemical vapor deposition coating.
Abstract:
Liquid chromatography techniques are disclosed. Specifically, the liquid chromatography technique includes providing a liquid chromatography system having a coated metallic fluid-contacting element, and transporting a fluid to contact the coated metallic fluid-contacting element. Conditions for the transporting of the fluid are selected from the group consisting of the temperature of the fluid being greater than 150° C., pressure urging the fluid being greater than 60 MPa, the fluid having a protein-containing analyte incompatible with one or both of titanium and polyether ether ketone, the fluid having a chelating agent incompatible with the one or both of the titanium or the polyether ether ketone, and combinations thereof
Abstract:
LC techniques are disclosed. The LC technique includes providing a liquid chromatography system having a coated metallic fluid-contacting element, and transporting a fluid to contact the coated metallic fluid contacting element. Conditions for the transporting of the fluid are selected from the group consisting of the temperature of the fluid being greater than 150 degree Celsius, pressure urging the fluid being greater than 60 MPa, the fluid having a protein-containing analyte incompatible with one of titanium and polyether ether ketone, the fluid having a chelating agent incompatible with the one or both of the titanium or the polyether ether ketone.
Abstract:
Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.
Abstract:
Treated articles and a process of producing the treated articles, systems having treated articles, and processes incorporating treated articles are disclosed. The treated articles include a metal or metallic substrate, and a surface treatment of the metal or metallic substrate, the surface treatment having fluorine, silicon, and carbon. The systems include a flow path, with the surface treatment being within the flow path. The processes include flowing a fluid through the flow path.
Abstract:
Thermal chemical vapor deposition coated product and uses of such products are disclosed. A thermal chemical vapor deposition coated product includes a threaded substrate and a lubricious coating on the threaded substrate, the lubricious coating having a coefficient of friction of between 0.05 and 0.58 and being a thermal chemical vapor deposition. A process includes engaging the thermal chemical vapor deposition coated product with a material having mating threads, and applying pressure to the thermal chemical vapor deposition coated product while engaged with the material.
Abstract:
A chemical vapor deposition process and coated article are disclosed. The chemical vapor deposition process includes positioning an article in a chemical vapor deposition chamber, then introducing a deposition gas to the chemical vapor deposition chamber at a sub-decomposition temperature that is below the thermal decomposition temperature of the deposition gas, and then heating the chamber to a super-decomposition temperature that is equal to or above the thermal decomposition temperature of the deposition gas resulting in a deposited coating on at least a surface of the article from the introducing of the deposition gas. The chemical vapor deposition process remains within a pressure range of 0.01 psia and 200 psia and/or the deposition gas is dimethylsilane. The coated article includes a substrate subject to corrosion and a deposited coating on the substrate, the deposited coating having silicon, and corrosion resistance.