Abstract:
A coated system for containing or conveying a hydrogen-containing fluid including a hydrogen susceptible metallic substrate and a coating on the hydrogen susceptible metallic substrate. The hydrogen-containing fluid is in contact with the coating and the coating reduces or eliminates the effect of hydrogen on the hydrogen susceptible metallic substrate. A coating process for coating a hydrogen susceptible metallic substrate is also disclosed.
Abstract:
A coated article and a chemical vapor deposition process are disclosed. The coated article includes a functionalized layer applied to the coated article by chemical vapor deposition. The functionalized layer is a layer selected from the group consisting of an oxidized-then-functionalized layer, an organofluoro treated layer, a fluorosilane treated layer, a trimethylsilane treated surface, an organofluorotrialkoxysilanes treated layer, an organofluorosilylhydrides-treated layer, an organofluoro silyl treated layer, a tridecafluoro 1,1,2,2-tetrahydrooctylsilane treated layer, an organofluoro alcohol treated layer, a pentafluoropropanol treated layer, an allylheptafluoroisopropyl ether treated layer, a (perfluorobutyl) ethylene treated layer, a (perfluorooctyl) ethylene treated layer, and combinations thereof. The process includes applying the functionalized layer.
Abstract:
Industrial equipment articles and thermal chemical vapor coated articles are disclosed. The articles include a coating on a substrate of the industrial equipment article, the coating including silicon, carbon, and hydrogen. The industrial equipment article requires resistance to protein adsorption. The industrial equipment article was heated during application of the coating to a temperature of between 300 degrees C. and 600 degrees C. The thermal chemical vapor coated article includes a coating on the thermal chemical vapor coated article, the coating formed by thermal decomposition, oxidation, then functionalization. The thermal chemical vapor coated article is industrial equipment requiring resistance to protein adsorption. The coating is resistant to the protein adsorption and is on a substrate heated during the thermal decomposition.
Abstract:
Medical device products have a coating with NAMSA Class VI certification and properties corresponding to the prior art coatings within U.S. Pat. No. 10,604,660. Medical device processes use the medical device product having a coating with NAMSA Class VI certification and properties corresponding to the prior art coatings within U.S. Pat. No. 10,604,660.
Abstract:
The present invention relates to a coated article. The coated article includes a first layer, a second layer, and a diffusion region between the first layer and the second layer. The first layer has a first atomic concentration of C, a first atomic concentration of Si, and a first atomic concentration of O. The second layer has a first atomic concentration of Fe, a first atomic concentration of Cr, and a first atomic concentration of Ni. The diffusion region has a second atomic concentration of the C, a second atomic concentration of the Si, a second atomic concentration of the O, a second atomic concentration of the Fe, a second atomic concentration of the Cr, and a second atomic concentration of the Ni. All of the atomic concentrations are based upon Auger Electron Spectroscopy.
Abstract:
Thermal chemical vapor deposition treatment is disclosed. Specifically, a thermal chemical vapor deposition treated article includes a substrate, and an oleophobic treatment to the substrate, the oleophobic treatment having oxygen, carbon, silicon, fluorine, and hydrogen. The oleophobic treatment has a treatment thickness of less than 600 nm and a heterogeneous wetting regime. The thermal chemical vapor deposition process includes positioning an article within a thermal chemical vapor deposition chamber, thermally reacting dimethylsilane to produce a layer, oxidizing the layer to produce an oxidized layer, and fluoro-functionalizing the oxidized layer to produce an oxidized then fluoro-functionalizing dimethylsilane chemical vapor deposition treatment. The oxidized then fluoro-functionalizing dimethylsilane chemical vapor deposition treatment has a treatment thickness of less than 600 nm and a heterogeneous wetting regime.
Abstract:
A coated article is disclosed. The article includes a coating formed by thermal decomposition, oxidation then functionalization. The article is configured for a marine environment, the marine environment including fouling features. The coating is resistant to the fouling features. Additionally or alternatively, the article is a medical device configured for a protein-containing environment, the protein-containing environment including protein adsorption features. The coating is resistant to the protein adsorption features.
Abstract:
Liquid chromatography techniques are disclosed. Specifically, the liquid chromatography technique includes providing a liquid chromatography system having a coated metallic fluid-contacting element, and transporting a fluid to contact the coated metallic fluid-contacting element. Conditions for the transporting of the fluid are selected from the group consisting of the temperature of the fluid being greater than 150° C., pressure urging the fluid being greater than 60 MPa, the fluid having a protein-containing analyte incompatible with one or both of titanium and polyether ether ketone, the fluid having a chelating agent incompatible with the one or both of the titanium or the polyether ether ketone, and combinations thereof.
Abstract:
Static thermal chemical vapor deposition treatment processes and static thermal chemical vapor deposition treatment systems are disclosed. The process includes providing an enclosed chamber configured to produce a material on a surface of an article within the enclosed chamber in response thermal energy being applied to a gaseous precursor, providing a liquid handling system in selective fluid communication with the enclosed chamber, flowing a liquid precursor through the liquid handling system, converting the liquid precursor to the gaseous precursor, and producing the material on the surface of the article in response to the thermal energy being applied to the gaseous precursor within the enclosed chamber. The system includes the enclosed chamber and the liquid handling system.
Abstract:
Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.