Abstract:
The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
Abstract:
ABSTRACTA system for achieving fixation of one or more moveable micro machined platforms for passively aligned optical components, comprising - a support structure containing structures for passive alignment of optical components- platform(s) containing structures for passive alignment of optical components- actuators for actively aligning the already passively aligned components on the platform(s) and the support structure to each other, where the actuators are strong enough while actuating to keep the platform(s) steady during fixation and weak enough while not actuating so as not to impede the fixation- a fixation mechanism to fixate the moveable platform(s) to the support structure.
Abstract:
The invention relates to a method of making a deflectable, free hanging micro structure comprising at least one hinge member, the method comprising the steps of providing a first sacrificial wafer comprising a single crystalline material constituting material forming the micro structure. A second semiconductor wafer comprising necessary components for forming the structure in cooperation with said first wafer is provided. Finite areas of a structured bonding material is provided, on one or both of said wafers at selected locations, said finite areas defining points of connection for joining said wafers. The wafers are bonded using heat and optionally pressure. Sacrificial material is etched away from said sacrificial wafer, patterning the top wafer by lithography is performed to define the desired deflectable microstructures having hinges, and subsequently silicon etch to make the structures.
Abstract:
In manufacturing a pressure sensor a recess that will form part of the sensor cavity is formed in a lower silicon substrate. An SOI-wafer having a monocrystalline silicon layer on top of a substrate is bonded to the lower silicon substrate closing the recess and forming the cavity. The supporting substrate of the SOI-wafer is then etched away, the portion of the monocrystalline layer located above the recess forming the sensor diaphragm. The oxide layer of the SOI-wafer here acts as an "ideal" etch stop in the case where the substrate wafer is removed by dry (plasma) or wet etching using e.g. KOH. This is due to high etch selectivity between silicon and oxide for some etch processes and it results in a diaphragm having a very accurately defined and uniform thickness.The cavity is evacuated by forming a opening to the cavity and then sealing the cavity by closing the opening using LPCVD. Sensor paths for sensing the deflection of the diaphragm are applied on the outer or inner surface of the diaphragm. The monocrystalline diphragm gives the sensor a good long-term stability. Also the sensor path can be made of monocrystalline material, this giving the sensor even better good long-term characteristics. An increased sensitivity can be obtained by making active portions of the sensor paths freely extending, unsupported by other material of the pressure sensor, by suitable etching procedures.
Abstract:
The invention relates to a device comprising a base substrate(700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from said component (702). It also comprises spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via said spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) comprises vias (710) comprising metal for providing electrical connection through said capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
Abstract:
The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
Abstract:
The invention relates to a method of making a starting substrate wafer for semiconductor engineering having electrical wafer through connections (140; 192). It comprises providing a wafer (110; 150) having a front side and a back side and having a base of low resistivity silicon and a layer of high resistivity material on the front side. On the wafer there are islands of low resistivity material in the layer of high resistivity material. The islands are in contact with the silicon base material. Trenches are etched from the back side of the wafer but not all the way through the wafer to provide insulating enclosures defining the wafer through connections (140; 192). The trenches are filled with insulating material. Then the front side of the wafer is grinded to expose the insulating material to create the wafer through connections. Also there is provided a wafer substrate for making integrated electronic circuits and/or components, comprising a low resistivity silicon base (110) having a high resistivity top layer (122) suitable for semiconductor engineering, characterized by having low resistivity wafer through connections (140).
Abstract:
The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
Abstract:
A starting substrate in the form of a semiconductor wafer (1) has a first side and a second side, the sides being plane-parallel with respect to each other, and has a thickness rendering it suitable for processing without significant risk of being damaged, for the fabrication of combined analogue and digital designs, the wafer including at least two partitions (A1, A2; DIGITAL, ANALOGUE) electrically insulated from each other by insulating material (2; 38; 81; L) extending entirely through the wafer. A method for making such substrates including etching trenches in a wafer, and filling trenches with insulating material is also described.