Abstract:
An SOI-based opto-electronic structure includes various electronic components disposed with their associated optical components within a single SOI layer, forming a monolithic arrangement. EMI/EMC shielding is provided by forming a metallized outer layer on the surface of an external prism coupler that interfaces with the SOI layer, the metallized layer including transparent apertures to allow an optical signal to be coupled into and out of the SOI layer. The opposing surface of the prism coupler may also be coated with a metallic material to provide additional shielding. Further, metallic shielding plates may be formed on the SOI structure itself, overlying the locations of EMI-sensitive electronics. All of these metallic layers are ultimately coupled to an external ground plane to isolate the structure and provide the necessary shielding.
Abstract:
A conventional CMOS fabrication technique is used to integrate the formation of passive optical devices and active electro-optic devices with standard CMOS electrical devices on a common SOI structure. The electrical devices and optical devices share the same surface SOI layer (a relatively thin, single crystal silicon layer), with various required semiconductor layers then formed over the SOI layer. In some instances, a set of process steps may be used to simultaneously form regions in both electrical and optical devices. Advantageously, the same metallization process is used to provide electrical connections to the electrical devices and the active electro-optic devices.
Abstract:
An improvement in the reliability and lifetime of SOI-based opto-electronic systems is provided through the use of a monolithic opto-electronic feedback arrangement that monitors one or more optical signals within the opto-electronic system and provides an electrical feedback signal to adjust the operation parameters of selected optical devices. For example, input signal coupling orientation may be controlled. Alternatively, the operation of an optical modulator, switch, filter, or attenuator may be under closed-loop feedback control by virtue of the inventive monolithic feedback arrangement. The feedback arrangement may also include a calibration/look-up table, coupled to the control electronics, to provide the baseline signals used to analyze the system's performance.
Title translation:STRAHLFORMUNG UND PRAKTISCHE VERFAHREN ZUR VERRINGERUNG VON MIT DER VERBINDUNG EXTERNER QUELLEN UND OPTIK MITDÜNNENSILIZIUMWELLENLEITERN VERBUNDENEN VERLUSTEN
Abstract:
A practical realization for achieving and maintaining high-efficiency transfer of light from input and output free-space optics to a high-index waveguide of submicron thickness is described. The required optical elements and methods of fabricating, aligning, and assembling these elements are discussed. Maintaining high coupling efficiency reliably over realistic ranges of device operating parameters is discussed in the context of the preferred embodiments.
Abstract:
An electro-optic modulator arrangement for achieving switching speeds greater than 1 Gb/s utilizes pre-emphasis pulses to accelerate the change in refractive index of the optical waveguide used to form the electro-optic modulator. In one embodiment, a feedback loop may be added to use a portion of the modulated optical output signal to adjust the magnitude and duration of the pre-emphasis pulses, as well as the various reference levels used for modulated. For free carrier-based electro~-optic modulators, including silicon-based electro-optic modulators, the pre-emphasis pulses are used to accelerate the movement of free carriers at the transitions between input signal data values.
Abstract:
A silicon-based electro-optic modulator (30) is based on forming a gate region of a first conductivity to partially overly a body region of a second conductivity type, with a relatively thin dielectric layer (10) interposed between the contiguous portions of the gate and body regions (12, 10). The modulator may be formed on an SOI platform, with the body region formed in the relatively thin silicon surface layer of the SOI structure and the gate region formed of a relatively thin silicon layer (10) overlying the SOI structure. The doping in the gate and body regions is controlled to form lightly doped regions above and below the dielectric, thus defining the active region (16) of the device. Advantageously, the optical electric field essentially coincides with the free carrier concentration area in this active device region. The application of a modulation signal thus causes the simultaneous accumulation, depletion or inversion of free carriers on both sides of the dielectric at the same time, resulting in high speed operation.
Abstract:
An arrangement for providing optical crossovers between waveguides formed in an SOI-based structure utilize a patterned geometry in the SOI structure that is selected to reduce the effects of crosstalk in the area where the signals overlap. Preferably, the optical signals are fixed to propagate along orthogonal directions (or are of different wavelengths) to minimize the effects of crosstalk. The geometry of the SOI structure is patterned to include predetermined tapers and/or reflecting surfaces to direct/shape the propagating optical signals. The patterned waveguide regions within the optical crossover region may be formed to include overlying polysilicon segments to further shape the propagating beams and improve the coupling efficiency of the crossover arrangement.
Abstract:
A silicon-based IR photodetector is formed within a silicon-on-insulator (SOI) structure by placing a metallic strip (preferably, a silicide) over a portion of an optical waveguide formed within a planar silicon surface layer (i.e., "planar SOI layer") of the SOI structure, the planar SOI layer comprising a thickness of less than one micron. Room temperature operation of the photodetector is accomplished as a result of the relatively low dark current associated with the SOI-based structure and the ability to use a relatively small surface area silicide strip to collect the photocurrent. The planar SOI layer may be doped, and the geometry of the silicide strip may be modified, as desired, to achieve improved results over prior art silicon-based photodetectors.
Abstract:
An optical coupling arrangement including an ultrathin silicon waveguide (18 ) formed in an upper silicon layer (14) of a silicon-on-insulator (SOI) structure and a silicon nanotaper structure (16) formed in the upper silicon layer and coupled to the ultrathin silicon waveguide. A dielectric waveguide coupling layer (24), with a refractive index greater than that of the dielectric insulating layer but less than that of silicon, overlies a portio n of the dielectric insulating layer (12) where an associated portion of the S OI layer has been removed. An end portion of the dielectric waveguide coupling layer overlaps an end section of the silicon nanotaper to form a mode conversion region (26). A free-space optical coupling arrangement (such as a prism (24) or grating) is disposed over the dielectric waveguide coupling layer and used to couple a propagating free space signal to the dielectric waveguide coupling layer and thereafter into the ultrathin silicon waveguide .
Abstract:
An optical coupling system for use with multiple wavelength optical signals provides improved coupling efficiency between a free-space optical beam and a relatively thin, surface layer of an SOI structure ("SOI layer"), allowing f or sufficient coupling efficiency (greater than 50%) over a predetermined wavelength range. An evanescent coupling layer, disposed between a coupling prism and an SOI layer, is particularly configured to improve the coupling efficiency. In one embodiment, the thickness of the evanescent layer is reduced below an optimum value for a single wavelength, the reduced thicknes s improving coupling efficiency over a predetermined wavelength range around a defined center wavelength. Alternatively, a tapered thickness evanescent coupling layer may be used to improve coupling efficiency (or a combination of reduced thickness and tapered configuration). Optical beam steering can be combined with a modified evanescent coupling layer to control the input beam launch angle and further improve coupling efficiency.