Abstract:
A transfer substrate with a compliant resin is used to bond one or more chips to a target wafer. An implant region is formed in a transfer substrate. A portion of the transfer substrate is etched to form a riser. Compliant material is applied to the transfer substrate. A chip is secured to the compliant material, wherein the chip is secured to the compliant material above the riser. The chip is bonded to a target wafer while the chip is secured to the compliant material. The transfer substrate and compliant material are removed from the chip. The transfer substrate is opaque to UV light.
Abstract:
A transfer substrate with a compliant resin is used to bond one or more chips to a target wafer. An implant region is formed in a transfer substrate. A portion of the transfer substrate is etched to form a riser. Compliant material is applied to the transfer substrate. A chip is secured to the compliant material, wherein the chip is secured to the compliant material above the riser. The chip is bonded to a target wafer while the chip is secured to the compliant material. The transfer substrate and compliant material are removed from the chip. The transfer substrate is opaque to UV light.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.