Abstract:
A composite semiconductor laser is made by securing a III-V wafer to a transfer wafer. A substrate of the III-V wafer is removed, and the III-V wafer is etched into a plurality of chips while the III-V wafer is secured to the transfer wafer. The transfer wafer is singulated. A portion of the transfer wafer is used as a handle for bonding the chip in a recess of a silicon device. The chip is used as a gain medium for the semiconductor laser.
Abstract:
A widely tunable laser system includes a substrate, first and second lasers, an output and at least one optical combining device. The first laser is integrated with the substrate, includes a gain medium that includes a first material, and emits light at a wavelength that is tunable within a first wavelength range that is determined at least in part by the first material. The second laser is integrated with the substrate, includes a gain medium that includes a second material, and emits light at a wavelength that is tunable within a second wavelength range that is different from the first wavelength range that is determined at least in part by the second material. The at least one optical combining device is configured to direct light from one or both of the first laser and the second laser to the output.
Abstract:
A photonic device includes a semiconductor wafer having a waveguide formed therein. An end of the waveguide includes a step. The photonic device further includes a semiconductor chip bonded to the semiconductor wafer and having an active region, and a waveguide coupler disposed in a gap between a sidewall of the semiconductor chip and the end of the waveguide. The waveguide coupler includes an optical bridge that has a first end and a second end opposing the first end. The first end of the optical bridge is interfaced with a facet of the active region of the semiconductor chip. The second end of the optical bridge is interfaced with the end of waveguide, and has a portion thereof disposed over the step at the end of the waveguide.
Abstract:
A semiconductor laser has a mirror formed in a gain chip. The mirror can be placed in the gain chip to provide a broadband reflector to support multiple lasers using the gain chip. The mirror can also be placed in the gain chip to have the semiconductor laser be more efficient or more powerful by changing an optical path length of the gain of the semiconductor laser.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.
Abstract:
An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
Abstract:
A modulator and a capacitor are integrated on a semiconductor substrate for modulating a laser beam. Integrating the capacitor on the substrate reduces parasitic inductance for high-speed optical communication.
Abstract:
A method forms a vertical output coupler for a waveguide that propagates light along a horizontal propagation direction, through a waveguide material that overlies a buried oxide layer. The method includes etching the waveguide to remove a portion of the waveguide. The etching forms at least a first plane that is at an edge of the waveguide, is adjacent to the removed portion of the waveguide, and is tilted at a vertical angle between 20 degrees and 70 degrees with respect to the propagation direction. The method further includes coating the first tilted plane with a reflective metal to form a mirror, such that the mirror reflects the light into a direction having a vertical component.