Abstract:
Example embodiments relate to a layer structure having a diffusion barrier layer, and a method of manufacturing the same. The layer structure includes first and second material layers and a diffusion barrier layer therebetween. The diffusion barrier layer includes a nanocrystalline graphene (nc-G) layer. In the layer structure, the diffusion barrier layer may further include a non-graphene metal compound layer or a graphene layer together with the nc-G layer. One of the first and second material layers is an insulating layer, a metal layer, or a semiconductor layer, and the remaining layer may be a metal layer.
Abstract:
A method of analyzing growth of a two-dimensional material includes forming a two-dimensional material layer includes defects on a substrate, depositing detection material layers on the defects, and one of (i) capturing an image of the two-dimensional material layer on which the detection material layers are deposited and processing the captured image, or (ii) obtaining map coordinates of the detection material layers and processing the obtained map coordinates.
Abstract:
A method for providing a search keyword and an electronic device supporting the same is provided. The method for providing, by an electronic device, a search keyword, the method includes displaying search results comprising at least one item in response to an entry of a first search keyword into a search keyword entry region, determining continuity between the first search keyword and a second search keyword which is a search keyword entered prior to the first search keyword, and storing at least one of the first search keyword and a search formula, in which the first search keyword and the second search keyword have been combined in a search keyword list, in response to the determination of the continuity between the first search keyword and the second search keyword.
Abstract:
A neuromorphic apparatus configured to process a multi-bit neuromorphic operation including a single axon circuit, a single synaptic circuit, a single neuron circuit, and a controller. The single axon circuit is configured to receive, as a first input, an i-th bit of an n-bit axon. The single synaptic circuit is configured to store, as a second input, a j-th bit of an m-bit synaptic weight and output a synaptic operation value between the first input and the second input. The single neuron circuit is configured to obtain each bit value of a multi-bit neuromorphic operation result between the n-bit axon and the m-bit synaptic weight, based on the output synaptic operation value. The controller is configured to respectively determine the i-th bit and the j-th bit to be sequentially assigned for each time period of different time periods to the single axon circuit and the single synaptic circuit.
Abstract:
Provided are a capacitor and a semiconductor device including the capacitor. The capacitor and the semiconductor device include a first electrode; a second electrode provided apart from the first electrode, a dielectric film between the first electrode and the second electrode, and an interfacial film wholly or at least partially in contact with the dielectric film and having an electron affinity greater than an electron affinity of the dielectric film.
Abstract:
A photodetector having a small form factor and having high detection efficiency with respect to both visible light and infrared rays may include a first electrode, a collector layer on the first electrode, a tunnel barrier layer on the collector layer, a graphene layer on the tunnel barrier layer, an emitter layer on the graphene layer, and a second electrode on the emitter layer. The photodetector may be included in an image sensor. An image sensor may include a substrate, an insulating layer on the substrate, and a plurality of photodetectors on the insulating layer. The photodetectors may be aligned with each other in a direction extending parallel or perpendicular to a top surface of the insulating layer. The photodetector may be included in a LiDAR system.
Abstract:
A capacitor includes: a bottom electrode; a top electrode over the bottom electrode; a dielectric film between the bottom electrode and the top electrode; and a doped Al2O3 film between the top electrode and the dielectric film, wherein the doped Al2O3 film includes a first dopant, and an oxide including the same element as the first dopant has a higher dielectric constant than a dielectric constant of Al2O3.
Abstract:
A photodetector having a small form factor and having high detection efficiency with respect to both visible light and infrared rays may include a first electrode, a collector layer on the first electrode, a tunnel barrier layer on the collector layer, a graphene layer on the tunnel barrier layer, an emitter layer on the graphene layer, and a second electrode on the emitter layer. The photodetector may be included in an image sensor. An image sensor may include a substrate, an insulating layer on the substrate, and a plurality of photodetectors on the insulating layer. The photodetectors may be aligned with each other in a direction extending parallel or perpendicular to a top surface of the insulating layer. The photodetector may be included in a LiDAR system.
Abstract:
Example embodiments relate to an image sensor configured to achieve a high photoelectric conversion efficiency and a low dark current. The image sensor includes first and second electrodes, a plurality of photodetection layers provided between the first and second electrodes, and an interlayer provided between the photodetection layers. The photodetection layers convert incident light into an electrical signal and include a semiconductor material. The interlayer includes a metallic or semi metallic material having anisotropy in electrical conductivity.
Abstract:
Provided are an optical sensor including graphene quantum dots and an image sensor including an optical sensing layer. The optical sensor may include a graphene quantum dot layer that includes a plurality of first graphene quantum dots bonded to a first functional group and a plurality of second graphene quantum dots bonded to a second functional group that is different from the first functional group. An absorption wavelength band of the optical sensor may be adjusted based on types of functional groups bonded to the respective graphene quantum dots and/or sizes of the graphene quantum dots.