Abstract:
Techniques for forming fiber devices that engage fibers to a substrate with similar material properties. A semiconductor template may be used to define positions and orientations of the fibers.
Abstract:
Techniques and devices for integrating optical fibers on substrates with grooves for various optical applications. Two openings that penetrate through the substrate are formed at both ends of each groove to allow a fiber to pass from one side of substrate to another side. The fiber cladding of a fiber portion positioned in the groove can be removed to produce an optical coupling port.
Abstract:
Fiber optical devices formed on substrates fabricated with grooves that operate based on evanescent optical coupling through a side-polished fiber surface in each fiber involved. A coupling control layer is formed between two fibers to control the evanescent coupling for optical switching operations.
Abstract:
Optical Mach-Zehnder interferometers and related devices, systems that have at least one fiber integrated or engaged to a substrate fabricated with one or more grooves. An integrated optical monitoring mechanism may be implemented in such devices.
Abstract:
Fiber optical devices formed on substrates fabricated with grooves that operate based on evanescent optical coupling through a side-polished fiber surface in each fiber involved. The fiber cladding under the side-polished fiber surface is designed to support a radial mode profile wider than a radial mode profile supported by adjacent fiber portions.
Abstract:
Materials and Methods related to diagnosing a clinical condition in a subject, or determining the subject's predisposition to develop the clinical condition, using a multi-parameter system to measure a plurality of parameters and an algorithm to determine a disease score.
Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling are described. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices. A Bragg grating may be implemented in such sensors to form reflective fiber sensors.
Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.