Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.
Abstract:
LED packages and their fabrication techniques are disclosed to provide LED package with improved thermal dissipation based on one or more thermally conductive channels or studs. In one implementation, a LED package includes a plastic body structured to have a hole that penetrates through the plastic body; a metal contact formed on the plastic body at one side of the hole to cover the hole; a LED mounted to the metal contact at a location that spatially overlaps with the hole; and a stud formed in the hole in contact with the metal contact at a first end of the stud and extending to an opening of the hole at a second end of the stud, the stud being formed of a thermally conductive material to transfer heat from the LED through the metal contact and the stud to dissipate the heat at the opening of the hole via the second end of the stud.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.
Abstract:
LED packages and their fabrication techniques are disclosed to provide LED package with improved thermal dissipation based on one or more thermally conductive channels or studs. In one implementation, a LED package includes a plastic body structured to have a hole that penetrates through the plastic body; a metal contact formed on the plastic body at one side of the hole to cover the hole; a LED mounted to the metal contact at a location that spatially overlaps with the hole; and a stud formed in the hole in contact with the metal contact at a first end of the stud and extending to an opening of the hole at a second end of the stud, the stud being formed of a thermally conductive material to transfer heat from the LED through the metal contact and the stud to dissipate the heat at the opening of the hole via the second end of the stud.
Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Materials and Methods related to diagnosing a clinical condition in a subject, or determining the subject's predisposition to develop the clinical condition, using a multi-parameter system to measure a plurality of parameters and an algorithm to determine a disease score.
Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling are described. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices. A Bragg grating may be implemented in such sensors to form reflective fiber sensors.
Abstract:
Waveguide sensors having a side-polished coupling port at the waveguide cladding to sense a material based on material-specific optical attenuation by evanescent coupling at the coupling port.
Abstract:
Techniques for coupling optical energy between a side-polished port of a fiber in one substrate and a coupling port of a waveguide in another substrate.