Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.
Abstract:
LED packages and their fabrication techniques are disclosed to provide LED package with improved thermal dissipation based on one or more thermally conductive channels or studs. In one implementation, a LED package includes a plastic body structured to have a hole that penetrates through the plastic body; a metal contact formed on the plastic body at one side of the hole to cover the hole; a LED mounted to the metal contact at a location that spatially overlaps with the hole; and a stud formed in the hole in contact with the metal contact at a first end of the stud and extending to an opening of the hole at a second end of the stud, the stud being formed of a thermally conductive material to transfer heat from the LED through the metal contact and the stud to dissipate the heat at the opening of the hole via the second end of the stud.
Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.
Abstract:
LED packages and their fabrication techniques are disclosed to provide LED package with improved thermal dissipation based on one or more thermally conductive channels or studs. In one implementation, a LED package includes a plastic body structured to have a hole that penetrates through the plastic body; a metal contact formed on the plastic body at one side of the hole to cover the hole; a LED mounted to the metal contact at a location that spatially overlaps with the hole; and a stud formed in the hole in contact with the metal contact at a first end of the stud and extending to an opening of the hole at a second end of the stud, the stud being formed of a thermally conductive material to transfer heat from the LED through the metal contact and the stud to dissipate the heat at the opening of the hole via the second end of the stud.
Abstract:
Poiyurea or polyurethane capsule compositions. A subset of these compositions contain a plurality of capsules and a capsule formation aid, in which each of the capsules contains a poiyurea or polyurethane wall and an oil core; the poiyurea or polyurethane wall is formed of a reaction product of a polyisocyanate and a cross-linking agent in the presence of the capsule formation aid; and the oil core contains an active material. The polyisocyante, cross-linking agent, and capsule formation aids are described herein. Also disclosed are methods of preparing poiyurea and polyurethane capsule compositions, as well as consumer products containing one of these compositions.
Abstract:
High lumen output and brightness illumination modules using an excitation light source and wavelength conversion part with multi-channel heat dissipation are disclosed. The exciting light source is a light emitting diode or a laser diode emitting in the UV and/or blue region. The luminescent material in the wavelength conversion part absorbs the excitation light and emit longer wavelength light. The enhancement approaches for brightness and polarization is disclosed.
Abstract:
Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.
Abstract:
A method of creating a plasma-resistant thermal oxide coating on a surface of an article, where the article is comprised of a metal or metal alloy which is typically selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof. The oxide coating is formed using a time-temperature profile which includes an initial rapid heating rage, followed by a gradual decrease in heating rate, to produce an oxide coating structure which is columnar in nature. The grain size of the crystals which make up the oxide coating is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate.