Abstract:
In a bulk acoustic wave (BAW) filter based on laterally acoustically coupled resonators on piezoelectric thin films, one can utilize two distinct acoustic plate wave modes of different nature, for example the thickness extensional (longitudinal) TE1 and the second harmonic thickness shear (TS2) mode to form a bandpass response. The invention is based on the excitation of at least two lateral standing wave resonances belonging to different plate wave modes that facilitate the transmission of signal. The passband is designed by tailoring the wave propagation characteristics in the device such that the resonances are excited at suitable frequencies to form a passband of a desired shape. The bandwidth of the filter described herein may therefore be more than twice that of the existing state-of-the-art microacoustic filters. Consequently, it has significant commercial and technological value.
Abstract:
The invention relates to a micromechanical device comprising a semiconductor element capable of deflecting or resonating and comprising at least two regions having different material properties and drive or sense means functionally coupled to said semiconductor element. According to the invention, at least one of said regions comprises one or more n-type doping agents, and the relative volumes, doping concentrations, doping agents and/or crystal orientations of the regions being configured so that the temperature sensitivities of the generalized stiffness are opposite in sign at least at one temperature for the regions, and the overall temperature drift of the generalized stiffness of the semiconductor element is 50 ppm or less on a temperature range of 100° C. The device can be a resonator. Also a method of designing the device is disclosed.
Abstract:
The invention relates to an acoustically coupled thin-film BAW filter, comprising a piezoelectric layer, an input-port on the piezoelectric layer changing electrical signal into an acoustic wave (SAW, BAW), and an output-port on the piezoelectric layer changing acoustic signal into electrical signal. In accordance with the invention the ports include electrodes positioned close to each other, and the filter is designed to operate in first order thickness-extensional TE1 mode.