Abstract:
Under one aspect of the present invention, a method for enhancing mobility of an atomic or molecular species on a substrate may include exposing a first region of a substrate to an atomic or molecular species that forms a molecular bond with the substrate in the first region; directing a laser pulse to a second region of the substrate so as to generate an acoustic wave in the second region, the acoustic wave having spatial and temporal characteristics selected to alter the molecular bond; and transmitting the acoustic wave from the second region to the first region, the acoustic wave altering the molecular bond between the substrate and the atomic or molecular species to enhance mobility of the atomic or molecular species on the substrate in the first region.
Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices including chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
Cell-based systems may interlock in a reconfigurable configuration to support a mission. Space systems, for example, of a relatively large size may be assembled using an ensemble of individual “cells”, which are individual space vehicles. The cells may be held together via magnets, electromagnets, mechanical interlocks, etc. The topology or shape of the joined cells may be altered by cells hopping, rotating, or “rolling” along the joint ensemble. The cells may be multifunctional, mass producible units. Rotation of cell faces, or of components within cells, may change the functionality of the cell. The cell maybe collapsible for stowage or during launch.
Abstract:
Describe herein is an energy storage system that includes a battery and a heat source. The battery harvests waste heat from the heat source to keep itself warm while storing electrical energy generated from a heat to energy transforming source. If the heat source is radioactive (e.g. radioisotope decay) a radiation hard battery is intimately connected to a waste heat source. The radiation hard battery harvests waste heat from the heat source to warm itself and to shield the radiation.
Abstract:
A method for constructing an inflatable environment on top of or beneath a surface of an extraterrestrial object includes spraying Regishell onto an airform or piping the Regishell into a sandwich membrane layer of the airform. When performing the spraying of the Regishell, the method further includes combining basalt material with the Regishell and applying the combination of the basalt material and Regishell to a reinforcement layer, the reinforcement layer being internal to the airform to strengthen the inflatable environment. When performing the piping of the Regishell into the sandwich membrane, the method further includes using the sandwich membrane layer as a permeable membrane or drilling one or more holes in the sandwich membrane layer forming vents to create the permeable membrane, and releasing the gas from the sandwich membrane layer from the vents to cure and conform the Regishell as a rigid shape and structurally sound layer.
Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices including chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
Cell-based space systems with nested-ring structures that interlock and can change configuration to support a mission are provided. The cells may self-assemble into a larger structure to carry out a mission. Multiple rotatable rings may be included in a cell, with a payload/control section in the center. The rings may provide power and/or data to trams that move about the rails. Trams may interlock with other cells, carry sensors or other devices, etc. Cells may be stowed in a cell stack that is deployable. Such cell-based systems may have various applications in space, on Earth, other celestial bodies, and underwater.
Abstract:
Under one aspect, a method of processing a material includes heating a region of the material with a first energy source; exciting an acoustic wave in the material; and transmitting the acoustic wave through the heated region, the heated region changing at least one property of the acoustic wave. The method also can include detecting the change in at least one property of the acoustic wave; characterizing a temperature of the material in the heated region based on the detected change in at least one property of the acoustic wave; and comparing the characterized temperature of the material in the heated region to a threshold. The method further can include, based on the characterized temperature of the material in the heated region being less than the threshold or being above the threshold for an insufficient amount of time, modifying a property of the heated region with a second energy source.
Abstract:
Under one aspect, a structure is provided that includes a substrate including a first material having a threshold temperature above which the first material is damaged and a layer consisting essentially of a second material molecularly bonded to the first material of the substrate. The second material is formed on the substrate at a reaction temperature that is higher than the threshold temperature of the first material. An interface between the substrate and the second material is a substantially defect-free surface.