Abstract:
An alloy part is cast in a mold (280) having a part forming cavity (292, 294, 296). The method comprises pouring a first alloy into the mold. The pouring causes: a surface (550) of the first alloy in the part forming cavity to raise relative to the part forming cavity; a branch flow of the poured first alloy to pass upwardly through a first portion (304) of a passageway; and the branch flow to pass downwardly through a second portion (310), of the passageway; solidifying some of the first alloy in the passageway to block the passageway while at least some of the first alloy in the part forming cavity remains molten. A second alloy is poured into the mold atop the first alloy and solidified.
Abstract:
A blade (60; 60-2) comprises an airfoil (61) and an attachment root (63). The blade has a tipward zone (80; 80-2; 80-2, 81) and a rootward zone (82; 82-2, 81; 82). The rootward zone has a single crystal structure. The tipward zone has a single crystal structure. The crystalline orientations of the rootward zone and tipward zone are at least 15° out of registry with each other.
Abstract:
A method for casting an article comprises a first region and a second region. The method comprises casting an alloy in a shell, the shell having a casting core protruding from a first metal piece; and deshelling and decoring to remove the shell and core and leave the first region formed by the first piece and the second region formed by the casted alloy.
Abstract:
An investment casting apparatus includes a furnace having an opening, a mold support, and a multi-axis actuator connected with the mold support and configured to retract the mold support from the opening with multiple-axis motion. An investment casting method includes withdrawing, with multiple-axis motion, a mold through the opening of the furnace to solidify a molten metal- or metalloid-based material in the mold. The apparatus and method can be used to form a cast article that has a body formed of the metal- or metalloid-based material. The body has a multi-textured, single crystal microstructure.