Abstract:
The invention provides a hollow airfoil which is extruded from discontinuously reinforced aluminum (DRA). Preferably the DRA include silicon carbide particles as a reinforcing element. Preferably the silicon carbide is present in an amount between 10-30 volume percent, most preferably 17.5 volume percent. The matrix material is preferably a 6000 aluminium alloy.
Abstract:
A high strength dispersion strengthened aluminum alloy comprising an aluminum solid solution matrix strengthened by a dispersion of particles based on the compound Al3X, where Al3X has an L12 structure, is described. Various alloying elements are employed to modify the lattice parameter of the matrix and/or the particles so that the matrix and particles have similar lattice parameters. The alloy is produced by rapid solidification from the melt.
Abstract:
A high strength dispersion strengthened aluminum alloy comprising an aluminum solid solution matrix strengthened by a dispersion of particles based on the compound Al3X, where Al3X has an L12 structure, is described. Various alloying elements are employed to modify the lattice parameter of the matrix and/or the particles so that the matrix and particles have similar lattice parameters. The alloy is produced by rapid solidification from the melt.
Abstract:
Dispersion strengthened aluminum-cerium-manganese alloys containing from about 0.05 to about 23.0 weight percent cerium and about 0.03 to about 9.5 weight percent manganese exhibit mechanical properties that make them useful alloys as a result of age hardening for extended periods at temperatures between 350° C. (662° F.) and 450° C. (842° F.).
Abstract:
A fan blade includes first and second titanium portions that are secured to one another with an aluminum alloy braze. A method of manufacturing a fan blade includes providing first and second titanium portions, applying an aluminum alloy braze to at least one of the first and second titanium portions, and heating the fan blade to melt the aluminum alloy braze and join the first and second portions to one another to provide a fan blade with an airfoil exterior contour.
Abstract:
A method of making an aluminum airfoil includes brazing a first airfoil piece and a second airfoil piece together using a braze material that includes an element selected from magnesium and zinc, to form a braze joint between the first airfoil piece and the second airfoil piece. At least one of the first airfoil piece or the second airfoil piece has an aluminum alloy composition that includes greater than 0.8% by weight of zinc.
Abstract:
A rotor has a rotor body with at least one slot receiving a blade. The blade has an outer surface, at least at some areas, formed of a first material and having an airfoil extending from a dovetail. The dovetail is received in the slot. A diode is in contact with a portion of the dovetail formed of a second material that is more electrically conductive than the first material. The diode is in contact with a rotating element that rotates with the rotor. The rotating element is formed of a third material. The first material is less electrically conductive than the third material. The diode and the rotating element together form a ground path from the portion of the dovetail into the rotor. An engine and a fan blade are also disclosed.
Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.