Abstract:
A hybrid airfoil for a gas turbine engine according to an exemplary embodiment of this disclosure can include a leading edge portion, a trailing edge portion, and an intermediate portion between the leading edge portion and the trailing edge portion. The leading edge portion can be made of a first material, the trailing edge portion can be made of a second material, and the intermediate portion can be made of a third material. At least two of the first material, the second material and the third material are different materials.
Abstract:
A method of forming a leading edge protection component includes depositing particles using a cold spray process on a mandrel to form a leading edge protection component; and removing the leading edge protection structure from the mandrel. The leading edge protection can be formed in one or more pieces and involve using one or more mandrels.
Abstract:
An additive manufacturing system and method of operation includes a build table for supporting a powder bed that is packed through the use of a vibration inducing device proximate to the build table. Through this packing, voids of the bed produced by larger particles of a mixed powder are filled with smaller particles. After or during such packing of particles, the powder bed is leveled utilizing a leveling arm, then selected regions of the bed are melted utilizing an energy gun.
Abstract:
A workpiece manufactured from an additive manufacturing system (AMS) having a particle separator and a method of operating includes modeling the workpiece into layers and modeling the layers into a plurality of regions. The AMS then deposits one of a plurality of particle types into a respective one of the plurality of regions. In this way, the surface finishes of the component may be controlled and material densities from one region to the next and from one layer to the next are also controlled.
Abstract:
An additive manufacturing system utilizing an epitaxy process, and method of manufacture, utilizes a heating source and a cooling source to control thermal gradients and a solidification rate of each slice of a workpiece manufactured from a seed having a directional grain microstructure. An energy gun is utilized to melt selected regions of each successive layer of a plurality layers of a powder in a powder bed to successively form each solidified slice of the workpiece.
Abstract:
A aerodynamic particle separator for an Additive Manufacturing System (AMS) has an air supply device to entrain a mixed powder in an airstream flowing through a housing. Each particle in the mixed powder is imparted with a momentum dependent upon the particle weight and size. Utilizing this momentum characteristic, the heavier particles are capable of crossing streamlines of the airstream at a bend portion of the housing and the lighter particles generally stay within the streamlines. Utilizing this dynamic characteristic, the particles of specific weight ranges are collected through respective offtake holes in the housing and controllably fed to a spreader of the AMS.
Abstract:
An additive manufacturing system comprises a build chamber, a powder bed additive manufacturing device disposed in the build chamber, and a powder contamination detection system. The powder contamination detection system is in communication with an atmosphere in the build chamber.
Abstract:
A method of forming a metal component with two and three dimensional internal functionally graded alloy composition gradients includes forming the component by a powder based layer-by-layer additive manufacturing process. The areal composition distribution of each powder layer is determined by simultaneously depositing different powders and powder mixtures through a mixing valve attached to a single nozzle during powder deposition. The layers are then sintered with a directed energy source to form a forging preform. The preform is then forged to form a component.
Abstract:
A method of forming a component includes preparing a starting powder and spreading the powder on a platform to form a first layer. A first mask with a plurality of openings is placed over the platform and the platform is irradiated with an energy source, such that the energy passes through the openings in the mask and transforms selected regions of the first layer into a denser form of matter according to a 3-D model of the component stored in a control system of the device. The platform is then indexed down one layer of thickness and a second layer of powder is spread on the first layer. A second mask with a plurality of openings is positioned between the energy source and the first layer and the first layer is irradiated with energy that passes through the mask and transforms selected regions of the second layer into a denser form of matter. The platform is indexed down one layer of thickness again and the process repeated until the component is formed.
Abstract:
A ceramic turbine component is formed by a process including mixing a ceramic powder with an inorganic binder powder. The powder mixture is then formed into a turbine component that is subsequently densified by transient liquid phase sintering. In an embodiment, the turbine component may be formed by an additive manufacturing process such as selective laser sintering.