Abstract:
Systems and methods are provided for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiment of the present invention include a method for placing materials on the plate at pre-determined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate with coatings at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micro-mechanical structures—where the structures may be formed from living or non-living material, tissue or non-tissue, organic or inorganic, and the like.
Abstract:
The invention provides apparatus and methods for subsecond lysis of selected cells (58) in a cell chamber (10) using a voltage pulse of 10 ms to 10 µs in duration followed by nearly simultaneous collection of the lysed cellular contents (59) into a capillary electrophoresis tube (42) or other suitable micro-collection device (15). Cell chambers (10) and capillary electrophoresis (42) tubes configured with electrodes (18, 19) for performing the electrical lysis are described. The influence of variables that govern the rate of cell lysis, such as the inter-electrode distance, pulse duration, and pulse strength are also described. The methods are illustrated using fluorophores that are loaded into a cell (10) and then collected following electrical lysis, separated by electrophoresis, and then detected by laser-induced fluorescence detection in a capillary electrophoresis system.
Abstract:
The activity of multiple proteins in a single living cell, portion of a cell or in a group of cells is simultaneously measured by introducing reporter molecules. The reporter(s) is chemically modified by the enzyme of interest. In some cases the enzyme(s) is affected by the addition of a stimulus or a pharmaceutical compound to the cell. The reactions between the enzymes and the reporters are diminished or terminated, and the reporter and modified reporter are removed. The activity of the enzyme(s) is determined by measuring the amount of reporter remaining, the amount of altered reporter produced, or by comparing the amount of reporter to the amount of altered reporter. A database is compiled of the activities of the different proteins. By performing a series of experiments at different time points, conditions, and varieties of cell types, a database is developed for molecular cellular mechanisms in health and disease states. By exposing cells to variety of compounds data for drug development and screening is provided.
Abstract:
A plate manufactured to enable samples of cells, micro-organisms, proteins, DNA, biomolecules and other biological media to be positioned at specific locations or sites on the plate for the purpose of performing addressable analyses on the samples. Preferably, some or all of the sites are built from a removable material or as pallets so that a subset of the samples of interest can be readily isolated from the plate for further processing or analysis. The plate can contain structures or chemical treatments that enhance or promote the attachment and/or function of the samples, and that promote or assist in their analyses.
Abstract:
Systems and methods for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiments of the present invention include a method for placing materials on the plate at predetermined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micromechanical structures where the structures may be formed from living or nonliving material, organic or inorganic, and the like.
Abstract:
Systems and methods are provided for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiment of the present invention include a method for placing materials on the plate at pre-determined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate with coatings at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micro-mechanical structures—where the structures may be formed from living or non-living material, tissue or non-tissue, organic or inorganic, and the like.