Abstract:
Provided is a method of fabricating a semiconductor device including the following steps. A dummy gate structure is formed on a substrate, wherein the dummy gate structure includes a dummy gate and a stacked hard mask, and the stacked hard mask includes from bottom to top a first hard mask layer and a second hard mask layer. A spacer is formed on a sidewall of the dummy gate structure. A mask layer is formed on the substrate. An opening corresponding to the second hard mask layer is formed in the mask layer. The second hard mask layer is removed. The mask layer is removed. A dry etch process is performed to remove the first hard mask layer, wherein the dry etch process uses NF3 and H2 as etchants.
Abstract:
The present invention provides a method of forming an opening on a semiconductor substrate. First, a substrate is provided. Then a dielectric layer and a cap layer are formed on the substrate. A ratio of a thickness of the dielectric layer and a thickness of the cap layer is substantially between 15 and 1.5. Next, a patterned boron nitride layer is formed on the cap layer. Lastly, an etching process is performed by using the patterned hard mask as a mask to etch the cap layer and the dielectric layer so as to form an opening in the cap layer and the dielectric layer.
Abstract:
A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer. The present invention further provides a semiconductor device having an aluminum layer with a reflectivity greater than 1, wherein the semiconductor device is formed by using the method.
Abstract:
A semiconductor structure for forming FinFETs is described. The semiconductor structure includes a semiconductor substrate, a plurality of odd fins of the FinFETs on the substrate, and a plurality of even fins of the FinFETs on the substrate between the odd fins of the FinFETs. The odd fins of the FinFETs are defined from the substrate. The even fins of the FinFETs are different from the odd fins of the FinFETs in at least one of the width and the material, and may be further different from the odd fins of the FinFETs in the height.
Abstract:
The method for forming a semiconductor structure includes first providing a substrate. Then, a TiN layer is formed on the substrate at a rate between 0.3 and 0.8 angstrom/second. Finally, a poly-silicon layer is formed directly on the TiN layer. Since the TiN in the barrier layer is formed at a low rate so as to obtain a good quality, the defects in the TiN layer or the defects on the above layer, such as gate dummy layer or gate cap layer, can be avoided.
Abstract:
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
Abstract:
The present invention discloses a semiconductor structure with an epitaxial layer, including a substrate, a blocking layer on said substrate, wherein said blocking layer is provided with predetermined recess patterns, multiple recesses formed in said substrate, wherein each of said multiple recesses is in 3D diamond shape with a centerline perpendicular to a surface of said substrate, a buffer layer on a surface of each of said multiple recesses, and an epitaxial layer comprising a buried portion formed on said buffer layer in each of said multiple recesses and only one above-surface portion formed directly above said blocking layer and directly above said recess patterns of said blocking layer, and said above-surface portion directly connects said buried portion in each of said multiple recesses, and a first void is formed inside each of said buried portions of said epitaxial layer in said recess.
Abstract:
An ReRAM structure includes a dielectric layer. A first ReRAM and a second ReRAM are disposed on the dielectric layer. The second ReRAM is at one side of the first ReRAM. A trench is disposed in the dielectric layer between the first ReRAM and the second ReRAM. The first ReRAM includes a bottom electrode, a variable resistive layer and a top electrode. The variable resistive layer is between the bottom electrode and the top electrode. A width of the bottom electrode is smaller than a width of the top electrode. The width of the bottom electrode is smaller than a width of the variable resistive layer.
Abstract:
A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
Abstract:
A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.