Abstract:
The present invention provides a photo-mask for manufacturing structures on a semiconductor substrate, which comprises a photo-mask substrate, a first pattern, a second pattern and a forbidden pattern. A first active region, a second active region are defined on the photo-mask substrate, and a region other than the first active region and the second active region are defined as a forbidden region. The first pattern is disposed in the first active region and corresponds to a first structure on the semiconductor substrate. The second pattern is disposed in the second active region and corresponds to a second structure on the semiconductor substrate. The forbidden pattern is disposed in the forbidden region, wherein the forbidden pattern has a dimension beyond resolution capability of photolithography and is not used to form any corresponding structure on the semiconductor substrate. The present invention further provides a method of manufacturing semiconductor structures.
Abstract:
A method of correcting an overlay error includes the following steps. First, an overlay mark disposed on a substrate is captured so as to generate overlay mark information. The overlay mark includes at least a pair of first mark patterns and at least a second mark pattern above the first mark patterns. Then, the overlay mark information is calculated to generate an offset value between two first mark patterns and to generate a shift value between the second mark pattern and one of the first mark patterns. Finally, the offset value is used to compensate the shift value so as to generate an amended shift value.
Abstract:
A patterning method is provided. First, a material layer is formed over a substrate. Thereafter, a plurality of directed self-assembly (DSA) patterns are formed on the material layer. Afterwards, a patterned photoresist layer is formed by using a single lithography process. The patterned photoresist layer covers a first portion of the DSA patterns and exposes a second portion of the DSA patterns. Further, the material layer is patterned by an etching process, using the patterned photoresist layer and the second portion of the DSA patterns as a mask.
Abstract:
A double patterning method comprises the following steps. First of all, a target layer and a mask layer stacked thereon are provided. Next, a first pattern opening is formed in the mask layer, and a width of the first pattern opening is measured to obtain a measuring value. Then, a second pattern opening is formed in the mask layer based on the measuring value, wherein the second pattern opening and the first pattern opening are co-planar. Finally, a bias trimming process is performed to trim the first pattern opening and the second pattern opening.
Abstract:
An overlap mark set is provided to have at least a first and a second overlap marks both of which are located at the same pattern layer. The first overlap mark includes at least two sets of X-directional linear patterns, having a preset offset a1 therebetween; and at least two sets of Y-directional linear patterns, having the preset offset a1 therebetween. The second overlap mark includes at least two sets of X-directional linear patterns, having a preset offset b1 therebetween; and at least two sets of Y-directional linear patterns, having the preset offset b1 therebetween. The preset offsets a1 and b1 are not equal.
Abstract:
The present invention provides a method of forming via holes. First, a substrate is provided. A plurality of first areas is defined on the substrate. A dielectric layer and a blocking layer are formed on the substrate. A patterned layer is formed on the blocking layer such that a sidewall of the blocking layer is completely covered by the patterned layer. The patterned layer includes a plurality of holes arranged in a regular array wherein the area of the hole array is greater than those of the first areas. The blocking layer in the first areas is removed by using the patterned layer as a mask. Lastly, the dielectric layer is patterned to form at least a via hole in the dielectric layer in the first area.
Abstract:
A measurement method of an overlay mark is provided. An overlay mark on a wafer is measured with a plurality of different wavelength regions of an optical measurement tool, so as to obtain a plurality of overlay values corresponding to the wavelength regions. The overlay mark on the wafer is measured with an electrical measurement tool to obtain a reference overlay value. The wavelength region that corresponds to the overlay value closest to the reference overlay value is determined as a correct wavelength region for the overlay mark.
Abstract:
The present invention provides a method of forming via holes. First, a substrate is provided. A plurality of first areas is defined on the substrate. A dielectric layer and a blocking layer are formed on the substrate. A patterned layer is formed on the blocking layer such that a sidewall of the blocking layer is completely covered by the patterned layer. The patterned layer includes a plurality of holes arranged in a regular array wherein the area of the hole array is greater than those of the first areas. The blocking layer in the first areas is removed by using the patterned layer as a mask. Lastly, the dielectric layer is patterned to form at least a via hole in the dielectric layer in the first area.
Abstract:
A measurement method of an overlay mark is provided. An overlay mark on a wafer is measured with a plurality of different wavelength regions of an optical measurement tool, so as to obtain a plurality of overlay values corresponding to the wavelength regions. The overlay mark on the wafer is measured with an electrical measurement tool to obtain a reference overlay value. The wavelength region that corresponds to the overlay value closest to the reference overlay value is determined as a correct wavelength region for the overlay mark.
Abstract:
An overlay mark structure includes a plurality of first patterns of a previous layer and a plurality of second patterns of a current layer. Each of the second patterns includes a first section and a second section. The first section is disposed corresponding to one of the first patterns in a vertical direction. The first section partially overlaps the first pattern corresponding to the first section in the vertical direction. The second section is separated from the first section in an elongation direction of the second pattern. A part of the first pattern corresponding to the first section is disposed between the first section and the second section in the elongation direction of the second pattern. A measurement method of the overlay mark structure includes performing a diffraction-based overlay measurement between each of the first sections and the first pattern overlapping the first section.