Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
An apparatus for projection lithography is disclosed. The apparatus has at least one magnetic doublet lens. An aperture scatter filter is interposed between the two lenses of the magnetic doublet lens. The aperture scatter filter is in the back focal plane of the magnetic doublet lens system, or in an equivalent conjugate plane thereof. The apparatus also has two magnetic clamps interposed between the two lenses in the magnetic doublet lens. The clamps are positioned and configured to prevent substantial overlap of the magnetic lens fields. The magnetic clamps are positioned so that the magnetic fields from the lenses in the magnetic doublet lens do not extend to the aperture scatter filter.
Abstract:
The specification describes a method and apparatus for electron beam lithography wherein a Wehnelt electron gun is modified to improve the uniformity of the electron beam. A mesh grid is applied to the Wehnelt aperture and the mesh grid functions as a multiple secondary emitter to produce a uniform beam flux over a wide area. The grid voltage of the modified gun is substantially lower than in a conventional Wehnelt gun, i.e. less than 100 volts, which can be switched conveniently and economically using semiconductor drive circuits.