Abstract:
A process to produce a liquid crystalline polymer film comprises electrostatically depositing a fine powder of liquid crystalline polymer resin onto a carrier and fusing the deposited fine powder to form a liquid crystalline polymer film that is isotropic in the x-y plane. The electrostatic deposition of the resin particles results in a substantially random molecular alignment of the liquid crystalline polymer. The carrier can comprise an all metal foil, a metal foil laminate, a polymer film material, or a release material.
Abstract:
Articles are disclosed, comprising a polymer foam layer having a first surface and an opposite second surface; a plurality of cells between the first surface and the opposite second surface of the polymer foam layer, wherein the thickness of the polymer foam layer between the first surface and the opposite second surface is 1.0 to 1.5 times the average height of the plurality of cells; and a plurality of electrically conductive particles aligned into a plurality of columns that essentially continuously span the foam between the first surface and the opposite second surface of the polymer foam layer. The foams are useful as gaskets for electromagnetic shielding, grounding pads, battery contact conductive spring elements, and the like.
Abstract:
A coated foil comprises a thick silane layer disposed on the copper foil, wherein the silane layer is present in an amount greater than or equal to about 0.1 gram per square meter. The copper foil may further comprise thermal barrier. The silanated copper foil may further comprise an elastomer layer disposed on a side of the thick silane layer opposite the copper foil. When the silanated copper foil is used in the manufacture of circuit materials the circuit materials demonstrate improved bond retention after exposure to acidic processing conditions.