Abstract:
A reticle having a test pattern for measurement of an optical characteristic of a projection optical system has a pattern adapted so that a high frequency component of a spectrum at a pupil plane of the projection optical system is reduced or suppressed. Illumination light is projected to the test pattern of the reticle in one direction or plural directions, and positions of images of the test pattern, formed by the projections in the plural directions, are detected and, based on it thereon, the optical characteristic of the projection optical system is measured.
Abstract:
An imprint apparatus includes a deforming unit configured to deform the mold held by the mold holding unit into a convex shape toward the substrate; a driving unit configured to change an attitude of the mold or the substrate during a pressing in which the mold deformed is pressed against the uncured resin to thereby make a position of a contact region at which the mold is brought into contact with the uncured resin movable; a control unit configured to calculate a plane coordinates of a centroid of the contact region based on an image information of the contact region acquired by a measuring unit and to control an operation of the driving unit such that the plane coordinates position of the centroid is directed toward the plane coordinates position of the centroid of a pattern-forming region on the substrate, which has been calculated or has been acquired in advance.
Abstract:
An exposure apparatus includes a calculating unit which calculates information representing the optical characteristic of the projection optical system, based on the relationship between the amount of defocus from the image plane of the projection optical system and the position of an image formed by the projection optical system.
Abstract:
A measurement method for measuring a position of an aperture stop in an optical system includes the steps of measuring a light intensity distribution of light that passes the aperture stop, at a position that is optically conjugate with a pupil position in the optical system, and determining a position of the aperture stop in the optical system based on a diffraction fringe of the light intensity distribution measured by the measuring step.
Abstract:
A method for irradiating onto a target optical system plural linearly polarized rays having different polarization directions, and for measuring a polarization characteristic of the target optical system including a birefringence amount R and a fast axis Φ includes the steps of irradiating linearly polarized ray having a polarization direction θ onto the target optical system and obtaining a centroid amount P of the ray that has transmitted through the target optical system, and obtaining the birefringence amount R and the fast axis Φ from P=−R·cos(2θ−Φ) or P=R·cos(2θ−Φ).
Abstract:
A method of measuring aberration of a projection optical system. The method includes the steps of imaging a test pattern through the projection optical system, and measuring a potential deviation amount of the image of the test pattern and measuring aberration of the project optical system on the basis of the positional deviation amount. The measuring step includes a process of determining a coefficient of a particular Zernike term and a process of changing a position or a shape of a region on a pupil plane of the projection optical system before light from the test pattern passes therethrough, in accordance with the particular Zernike term.
Abstract:
A method of detecting focus information about an image projecting optical system includes performing mark projection through the optical system, and, based on illumination lights having different chief ray incidence directions, the mark projection is carried out so that mark images formed by the illumination lights, respectively, are superposed one upon another approximately upon an imaging plane, and detecting focus information about the optical system on the basis of information related to a deviation between the mark images superposed.
Abstract:
A position detection apparatus includes an illumination optical system for illuminating a first diffraction grating having periods in each of a first direction and a second direction different from the first direction, and a second diffraction grating having a period different from the period in the second direction of the first diffraction grating in the second direction, at an oblique incidence, and a detection optical system for detecting diffracted light from the first diffraction grating and the second diffraction grating, wherein a relative position of the first diffraction grating and the second diffraction grating is detected based on the detected diffracted light, and wherein the illumination optical system includes a plurality of light intensity distributions in the first direction except for on an optical axis of the detection optical system, in a pupil plane thereof.
Abstract:
The imprint apparatus of the present invention molds an imprint material on a substrate using a mold and cures the imprint material to form a pattern on the substrate. The apparatus includes a holder configured to attract the mold to hold the mold; and a pressure reduction device configured to reduce a back pressure of the mold held by the holder, wherein the apparatus is configured to reduce the back pressure by the pressure reduction device in parallel with release of the mold from the imprint material.
Abstract:
A position detection apparatus includes an illumination optical system for illuminating a first diffraction grating having periods in each of a first direction and a second direction different from the first direction, and a second diffraction grating having a period different from the period in the second direction of the first diffraction grating in the second direction, at an oblique incidence, and a detection optical system for detecting diffracted light from the first diffraction grating and the second diffraction grating, wherein a relative position of the first diffraction grating and the second diffraction grating is detected based on the detected diffracted light, and wherein the illumination optical system includes a plurality of light intensity distributions in the first direction except for on an optical axis of the detection optical system, in a pupil plane thereof.