Abstract:
The present invention discloses, inter alia, a micro-electromechanical device (MEMD) for sensing and for harvesting electrical energy responsive to being subjected to mechanical forces, comprising at least one first conductive element fixedly mounted on a first support, wherein the at least one first conductive element is chargeable with electrons; and at least one second conductive element inertia-mounted on a second support such that the first and second supports are electrically isolated from each other.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.
Abstract:
A device includes a first stage having a first optical switch, a first transistor connected to the first optical switch, and a second transistor connected to the first optical switch and the first transistor. The device also includes a second stage having a second optical switch, a third transistor connected to the second transistor and the second optical switch, and a fourth transistor connected to the second transistor, the second optical switch, and the third transistor.
Abstract:
A semiconductor device, includes a semiconductor substrate (10) having a first (12a) and a second (12b) side. There is provided at least one via (15) extending through the substrate (10) having first (16a) and second (16b) end surfaces, the first end surface (16a) constituting a transducer electrode for interacting with a movable element (14) arranged at the first side (12a) of the substrate (10). A shield (17) is provided on and covers at least part of the first side (12a) of the substrate (10), the shield/mask (17) including a conductive layer (19a) and an insulating material layer (19b) provided between the substrate (10) and the conductive layer (19a). The mask has an opening (18) exposing only a part of the first surface (16a) of the via. Preferably the opening (18) in the mask is precisely aligned with the movable element, and the area of the opening is accurately defined.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.
Abstract:
Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
Abstract:
L'invention concerne une membrane en carbone amorphe pour un microsystème électromécanique, la membrane en carbone amorphe présentant une épaisseur comprise enre 1 nm et 50 nm, et de préférence comprise entre 3 nm et 20 nm, dans laquelle la membrane en carbone amorphe présente un taux d'hybridation de type sp 3 compris entre 20% et 40%.
Abstract:
A package structure and its manufacturing method are provided. The package structure includes a substrate with a recess, and a first MEMS chip, a first intermediate chip, a second MEMS chip and a first capping plate sequentially formed on the substrate. The lower surface of the first MEMS chip has a first sensor or a microactuator. The upper surface of the second MEMS chip has a second sensor or a microactuator. The first intermediate chip has a through-substrate via, and includes a signal conversion unit, a logic operation unit, a control unit, or a combination thereof. The package structure includes at least one of the first sensor and the second sensor.