Method And Apparatus For Monitoring Plasma Conditions In An Etching Plasma Processing Facility
    12.
    发明申请
    Method And Apparatus For Monitoring Plasma Conditions In An Etching Plasma Processing Facility 审中-公开
    用于在蚀刻等离子体处理设备中监测等离子体条件的方法和装置

    公开(公告)号:US20080134757A1

    公开(公告)日:2008-06-12

    申请号:US11908668

    申请日:2006-03-15

    Abstract: A gas sensor and method of gas sensing, e.g., of a type as useful with downstream sensor elements for determining the plasma conditions (e.g., plasma etching end point) in a semiconductor etching facility that utilizes halogen-containing plasma and/or oxygen-containing plasma. Such sensor elements are capable of exhibiting temperature change in the presence of energetic gas species, e.g., fluorine, chlorine, iodine, bromine, oxygen, and derivatives and radicals thereof that are generated by the plasma, and correspondingly generating an output signal indicative of such temperature change for determination of the plasma conditions in the etching plasma processing facility.

    Abstract translation: 一种气体传感器和气体传感方法,例如,对于使用含卤素等离子体和/或含氧的半导体蚀刻设备中用于确定等离子体条件(例如,等离子体蚀刻终点)的下游传感器元件有用的类型 等离子体。 这样的传感器元件能够在由等离子体产生的能量气体物质例如氟,氯,碘,溴,氧及其衍生物和自由基的存在下表现出温度变化,并且相应地产生指示其的输出信号 用于确定蚀刻等离子体处理设备中的等离子体条件的温度变化。

    Microelectromechanical device manufacturing process
    13.
    发明授权
    Microelectromechanical device manufacturing process 失效
    微机电装置制造工艺

    公开(公告)号:US06337027B1

    公开(公告)日:2002-01-08

    申请号:US09410166

    申请日:1999-09-30

    Inventor: Kurt D. Humphrey

    Abstract: The present invention relates to micro electromechanical systems (MEMS) devices and more specifically to a process for manufacturing MEMS devices having at least one suspended structural element. The present invention seeks to provide an improved method for manufacture of MEMS devices having improved safety and increased yield and throughput compared to conventional EDP immersion process techniques. MEMS devices are made using a modified dissolution process that removes, in a selective etch step, inactive silicon to release an active silicon device from a sacrificial substrate. The present invention uses a selective etchant in conjunction with a commercial spray acid processing tool to provide a dissolution process with improved throughput, improved repeatable and uniform etch rates and reduction in the number of processing steps and chemical containment for improved safety. When the etch process is complete, the solvent spray is turned off and a spray of de-ionized water is directed onto composite structure to remove residual solvent without causing suspended elements to adhere to the support substrate.

    Abstract translation: 本发明涉及微机电系统(MEMS)装置,更具体地涉及一种用于制造具有至少一个悬挂结构元件的MEMS装置的方法。 本发明寻求提供一种用于制造具有改进的安全性并且与常规EDP浸渍工艺技术相比增加的产量和产量的MEMS装置的改进方法。 使用改进的溶解过程制造MEMS器件,其在选择性蚀刻步骤中去除非活性硅以从牺牲衬底释放活性硅器件。 本发明使用选择性蚀刻剂与商业喷雾酸处理工具结合,以提供具有改善的生产量,改进的可重复和均匀蚀刻速率的溶解过程以及减少加工步骤和化学容纳物以提高安全性。 当蚀刻过程完成时,关闭溶剂喷雾,并将去离子水的喷雾引导到复合结构上以除去残留的溶剂,而不会使悬浮的元素粘附到载体基底上。

    少なくとも1つの面取りを有するシリコン系構成部品及びその製作方法
    14.
    发明专利
    少なくとも1つの面取りを有するシリコン系構成部品及びその製作方法 审中-公开
    具有至少一个倒角部及其制造方法的硅结构

    公开(公告)号:JP2017007086A

    公开(公告)日:2017-01-12

    申请号:JP2016122399

    申请日:2016-06-21

    Abstract: 【課題】構成部品の美的外観を改善し、かつ機械的強度を改善するための、新たなタイプのシリコン系微小機械構成部品及び新たなタイプの製作方法を提案する。 【解決手段】本発明は、少なくとも1つの面取りを有するシリコン系微小機械構成部品に関し、このシリコン系微小機械構成部品は、少なくとも1つの傾斜した側壁のエッチングステップを、垂直な側壁の「Bosch」エッチングと組み合わせた方法から形成され、これにより、シリコン系ウェハの微小機械加工によって形成される構成部品の美的外観の改善及び機械的強度の改善が可能となる。 【選択図】図16

    Abstract translation: 甲提高组件的美学外观,并且提高了机械强度,提出一种新的形态的制造方法的一个新的类型和基于硅的微机械部件。 本发明涉及一种具有至少一个倒角,所述基于硅的微机械元件,所述至少一个倾斜的侧壁的蚀刻步骤的硅基微机械部件,“博世”垂直侧壁蚀刻 它从该方法中的组合形成了,从而,提高了部件的美学外观的改进的和机械强度以由硅晶片的微细加工来形成也是可能的。 .The 16

    IMPROVED METHOD AND APPARATUS FOR MONITORING A MICROSTRUCTURE ETCHING PROCESS
    16.
    发明申请
    IMPROVED METHOD AND APPARATUS FOR MONITORING A MICROSTRUCTURE ETCHING PROCESS 审中-公开
    用于监测微结构蚀刻过程的改进方法和装置

    公开(公告)号:WO2006077390A1

    公开(公告)日:2006-07-27

    申请号:PCT/GB2006/000140

    申请日:2006-01-17

    Abstract: An etching monitoring apparatus (1) and related method for use in the manufacture of microstructures (2) (and in particular MEMS) located within an etching chamber (3) is described. The apparatus (1) and related method operates by setting the temperature of the chamber (3) within which the microstructure (2) is located at a starting temperature, and maintaining the partial pressure of an etching gas within the chamber (3) at a constant value. As a result the surface temperature o f the microstructure (2) within the chamber (3) is primarily determined by the etch rate. Therefore, by employing a thermometer (8) to monitor the change in etching surface temperature, a direct diagnostic for monitoring the etching process is provided.

    Abstract translation: 描述了一种用于制造位于蚀刻室(3)内的微结构(2)(特别是MEMS)的蚀刻监测装置(1)和相关方法。 设备(1)和相关方法通过将微结构(2)所在的室(3)的温度设定在起始温度并将室内(3)内的蚀刻气体的分压维持在 恒定值。 结果,室(3)内的微结构(2)的表面温度主要由蚀刻速率决定。 因此,通过使用温度计(8)来监测蚀刻表面温度的变化,提供了用于监测蚀刻工艺的直接诊断。

    CONTROLLED FABRICATION OF GAPS IN ELECTRICALLY CONDUCTING STRUCTURES
    17.
    发明申请
    CONTROLLED FABRICATION OF GAPS IN ELECTRICALLY CONDUCTING STRUCTURES 审中-公开
    电导体结构中GAPS的控制制造

    公开(公告)号:WO2004077503A2

    公开(公告)日:2004-09-10

    申请号:PCT/US2004/002502

    申请日:2004-01-29

    IPC: H01L

    Abstract: A method for controlling a gap in an electrically conducting solid state structure provided with a gap. The structure is exposed to a fabrication process environment conditions of which are selected to alter an extent of the gap. During exposure of the structure to the process environment, a voltage bias is applied across the gap. Electron tunneling current across the gap is measured during the process environment exposure and the process environment is controlled during process environment exposure based on tunneling current measurement. A method for controlling the gap between electrically conducting electrodes provided on a support structure. Each electrode has an electrode tip separated from other electrode tips by a gap. The electrodes are exposed to a flux of ions causing transport of material of the electrodes to corresponding electrode tips, locally adding material of the electrodes to electrode tips in the gap.

    Abstract translation: 一种用于控制具有间隙的导电固态结构中的间隙的方法。 该结构暴露于制造工艺环境条件,其条件被选择以改变间隙的程度。 在将结构暴露于工艺环境中时,跨越间隙施加电压偏置。 在工艺环境暴露期间测量跨越间隙的电子隧道电流,并且基于隧道电流测量在工艺环境暴露期间控制工艺环境。 一种用于控制设置在支撑结构上的导电电极之间的间隙的方法。 每个电极具有通过间隙与其它电极尖端分离的电极头。 电极暴露于离子通量,导致电极的材料传输到相应的电极尖端,将电极的材料局部地添加到间隙中的电极尖端。

    SELECTIVE PATTERNING OF AN INTEGRATED FLUXGATE DEVICE
    18.
    发明申请
    SELECTIVE PATTERNING OF AN INTEGRATED FLUXGATE DEVICE 审中-公开
    一体化助熔剂装置的选择性设计

    公开(公告)号:WO2017161082A1

    公开(公告)日:2017-09-21

    申请号:PCT/US2017/022650

    申请日:2017-03-16

    Abstract: In described examples, a method comprises forming an etch stop layer (151), a first titanium layer (312), a magnetic core (130), a second titanium layer (342), and patterning the first and second titanium layers (312, 342). The etch stop layer (151) is formed above a substrate. The first titanium layer (312) is formed on the etch stop layer (151). The magnetic core (130) is formed on the first titanium layer (312). The second titanium layer (342) has a first portion encapsulating the magnetic core (130) with the first titanium layer (312), and a second portion interfacing with the first titanium layer (312) beyond the magnetic core (130). The patterning of the first and second titanium layers (312, 342) includes forming a mask (352) over a magnetic core region (170) and etching the first and second titanium layers (312, 342) exposed by the mask (352) using a titanium etchant (356, 357) and a titanium oxide etchant (358).

    Abstract translation: 在所描述的示例中,一种方法包括形成蚀刻停止层(151),第一钛层(312),磁芯(130),第二钛层(342),并且图案化 第一和第二钛层(312,342)。 蚀刻停止层(151)形成在衬底上方。 第一钛层(312)形成在蚀刻停止层(151)上。 磁芯(130)形成在第一钛层(312)上。 第二钛层(342)具有用第一钛层(312)封装磁芯(130)的第一部分和与第一钛层(312)接触超过磁芯(130)的第二部分。 第一和第二钛层(312,342)的图案化包括在磁芯区域(170)上方形成掩模(352)并且使用掩模(352)使用由掩模(352)暴露的第一和第二钛层 钛蚀刻剂(356,357)和氧化钛蚀刻剂(358)。

Patent Agency Ranking