Abstract:
A process for producing flexible MEMS thin film without a manufactured substrate applied in a MEMS manufacture specially includes a method of forming a component interface in the middle between a manufactured substrate and a MEMS thin film formed on the manufactured substrate as a basis, which component interface is so easily destroyed by an external force that the MEMS thin film produced by the mentioned process is easily separated from the manufactured substrate, and the separated MEMS thin film due to out of limitation from the manufactured substrate may be further processed in later working process to obtain a MEMS thin film with special structural features has flexibility and particularly has electrical circuits, micro structure, or MEMS components integrated and manufactured into inside or on its both sides.
Abstract:
A MEMS device, e.g., a flexible MEMS pressure sensor, is formed by disposing a sacrificial layer, such as photoresist, on a substrate. A first flexible support layer is disposed on the substrate, and a first conductive layer is disposed over a portion of the first support layer. A liquid or gel separator, e.g., silicone oil, is disposed on an internal region of the first conductive layer. A second flexible support layer encapsulates the first conductive layer and the separator. A second conductive layer disposed over the second support layer at least partially overlaps the first conductive layer and forms a parallel plate capacitor. A third flexible support layer encapsulates the second conductive layer and second support layer. Soaking the sensor in hot water releases the sensor from the sacrificial layer.
Abstract:
Process for fabrication of a micromechanical and/or nanomechanical structure comprising the following steps, starting from an element comprising a support substrate and a sacrificial layer: a) formation of a first layer, at least part of which is porous, b) formation on the first layer of a layer made of one (or several) materials providing the mechanical properties of the structure, called the intermediate layer, c) formation on the intermediate layer of a second layer, at least part of which is porous, d) formation of said structure in the stack composed of the first layer, the intermediate layer and the second layer, e) release of said structure by at least partial removal of the sacrificial layer.
Abstract:
Process for fabrication of a micromechanical and/or nanomechanical structure comprising the following steps, starting from an element comprising a support substrate and a sacrificial layer: a) formation of a first layer, at least part of which is porous, b) formation on the first layer of a layer made of one (or several) materials providing the mechanical properties of the structure, called the intermediate layer, c) formation on the intermediate layer of a second layer, at least part of which is porous, d) formation of said structure in the stack composed of the first layer, the intermediate layer and the second layer, e) release of said structure by at least partial removal of the sacrificial layer.
Abstract:
A method of printing comprises the steps of: providing a solid state material having an exposed surface; applying an auxiliary layer to the exposed surface to form a composite structure, the auxiliary layer having a stress pattern; subjecting the composite structure to conditions facilitating fracture of the solid state material along a plane at a depth therein; and removing the auxiliary layer and, therewith, a layer of the solid state material terminating at the fracture depth, wherein an exposed surface of the removed layer of solid state material has a surface topology corresponding to the stress pattern.
Abstract:
A device having at least one element of a floating rigid microstructure element made of a structure layer(s) and a rigidity lining which increases its resistance to flexing and to torsion. The increased rigidity of the microstructure element allows the thickness and/or the width to be reduced, particularly of the structure layer(s) and hence allows an increase in the thermal resistance.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for forming an interface capable of easily separating a device from a base substrate in a semi-conductor or micro-machine manufacturing step. SOLUTION: An interface 30 which is separable by breakage with the external force is constituted of a material of weak bonding property or a material to be easily removed by the etching during the manufacturing step between a process substrate 10 and a device 20. In a second step of the device manufacture, the separable interface 30 is broken to separate the device 20 from the process substrate 10. In particular, the device is flexible and provided with a circuit contact, a small structure or a micro-machine device on upper and lower sides via a micro-machine thin film formed of the separable interface 30. COPYRIGHT: (C)2006,JPO&NCIPI