Abstract:
The application provides a product with a protective coating and a manufacturing method thereof. Prepare a first precursor dispersion comprising a first active organic precursor, and the first active organic precursor is a fluorine-free monomer. Prepare a second precursor dispersion comprising a second active organic precursor, and the second active organic precursor is a fluorine-containing monomer. Apply the first precursor dispersion to a product body, and dry the applied first precursor dispersion to form a first dried layer. Apply the second precursor dispersion to the first dried layer to cover the first dried layer, and dry the applied second precursor dispersion to form a second dried layer, so that the first active organic precursor and the second active organic precursor are polymerized to obtain a product with a protective coating.
Abstract:
A separator containing a substrate and a release layer formed on at least one side of the substrate wherein the separator shows a strain of not more than 7% when a load of 5N/20 mm is applied for one minute in the pulling direction, and when the substrate is cut in half in the thickness direction to divide the separator into two, an apparent elastic modulus in the pulling direction of one of the divided separators is larger than an apparent elastic modulus in the pulling direction of the other divided separator.
Abstract:
A two-pack, crosslinking aqueous adhesive, which comprises (A) an adhesive component comprising an aqueous liquid of a polymer containing at least one of a halogen atom, a carboxyl group or an ester bond in the backbone chain or side chain of the polymer molecule and (B) a curing component comprising an active silyl compound containing at least one of an amino group or an imino group in the molecule, which has excellent emulsion stability after mixing the components, long pot-life and excellent heat resistance and is suitable for adhesion of materials which require heat resistance such as interior automotive trims.
Abstract:
A fluoropolymer surface can be adhered to another surface by coating a fluoropolymer surface with a perfluorinated cycloalkane or a solution of a fluoropolymer in a perfluorinated cycloalkane to make a coated fluoropolymer surface, contacting said coated fluoropolymer surface with another surface, and then applying pressure to force said coated fluoropolymer surface and said another surface together, to adhere said fluoropolymer surface to said another surface. The process is carried out at a temperature below the perfluorinated cycloalkane's atmospheric pressure boiling point of 140 DEG C or more.
Abstract:
Embodiments of the present disclosure pertain to adhesive compositions that include a fluorinated molecule and a hydrogen-containing molecule that are non-covalently associated with one another. The molecules may be non-covalently associated with one another through dipole-dipole interactions that create a fluorine-hydrogen electronegativity difference between at least some of the fluorine atoms of the fluorinated molecule and at least some of the hydrogen atoms of the hydrogen-containing molecule. The fluorinated molecule and the hydrogen- containing molecule may be in different phases, such as a liquid phase for one molecule and a solid phase for the other molecule. Additional embodiments pertain to methods of enhancing an adhesiveness of a surface by applying an adhesive composition of the present disclosure to the surface. Further embodiments pertain to methods of making the adhesive compositions by mixing a fluorinated molecule with a hydrogen-containing molecule such that the molecules become non-covalently associated with one another.
Abstract:
A fluoropolymer surface can be adhered to another surface by coating a fluoropolymer surface with a perfluorinated cycloalkane or a solution of a fluoropolymer in a perfluorinated cycloalkane to make a coated fluoropolymer surface, contacting said coated fluoropolymer surface with another surface, and then applying pressure to force said coated fluoropolymer surface and said another surface together, to adhere said fluoropolymer surface to said another surface. The process is carried out at a temperature below the perfluorinated cycloalkane's atmospheric pressure boiling point of 140 DEG C or more.
Abstract:
A process for purifying fluoropolymers by contacting them at temperatures above 140 DEG C with a liquid perfluorinated cycloalkane. The resulting polymers are particularly useful where polymers with reduced impurities are desirable, such as in medical devices and in parts for the semiconductor manufacturing industry. The liquid perfluorinated cycloalkanes improve the adhesion of fluoropolymer to themselves and other materials.