Abstract:
High energy (e.g., ultrasonic) mixing of a hydrocarbon feedstock and reactants comprised of an oxidation source, acid, and optional catalyst yields a liquid hydrocarbon product having increased cetane number. Ultrasonic mixing creates cavitation, which involves formation and violent collapse of micron-sized bubbles, which greatly increases reactivity of the reactants. Cavitation substantially increases cetane number compared to reactions carried out using conventional mixing processes, such as simple mechanical stifling. An aqueous mixture comprising water and acid can be pretreated with ozone or other oxidizer using ultrasonic cavitation prior to reacting the pretreated mixture with a hydrocarbon feedstock to promote cetane-increasing reactions. Controlling temperature inside the reactor promotes beneficial cetane-increasing reactions while minimizing formation of water-soluble sulfones.
Abstract:
The invention relates to overcoming a new deposit problem, namely the formation on injector components and intake valves of gasoline engines of deposits containing a substantial amount of inorganic material along with some organic binder materials. This problem has been traced to the presence of trace amounts of alkali metal salts in the fuel composition, and the invention overcomes the problem by including in such fuels a minor amount of at least one gasoline-soluble complexing agent capable of forming in the gasoline a gasoline-soluble complex with said inorganic alkali metal salt and/or the alkali metal cation thereof. The complexing agents used are selected from crown ethers, aza-crown ethers, polycrown ethers, lariat-crown ethers, cryptands, spherands, and bridged spherands.
Abstract:
High energy (e.g., ultrasonic) mixing of a liquid hydrocarbon feedstock and reactants comprised of an oxidation source, catalyst and acid yields a diesel fuel product or additive having substantially increased cetane number. Ultrasonic mixing creates cavitation, which involves the formation and violent collapse of micron-sized bubbles, which greatly increases the reactivity of the reactants. This, in turn, substantially increases the cetane number compared to reactions carried out using conventional mixing processes, such as simple mechanical stirring. Alternatively, an aqueous mixture comprising water and acid can be pretreated with an oxidation source such as ozone and subjected to ultrasonic cavitation prior to reacting the pretreated mixture with a liquid hydrocarbon feedstock.
Abstract:
Disclosed is a biodiesel fuel additive composition which accelerates combustion phenomenon, reduces ignition delay, and improves Cetane number, thereby lowering particulate emissions, and improving fuel economy in diesel engines.
Abstract:
Disclosed is an ether containing motor fuel additive composition which synergistically interacts with the ether additive to reduce fuel intake system deposit formation and/or combustion chamber deposit formation, thereby reducing engine ORI and maintaining desired engine performance.
Abstract:
Disclosed is a MMT containing motor fuel additive composition which synergistically combines the octane enhancing capabilities of MMT with the benefits of a special additive package to reduce both fuel intake system deposit formation and combustion chamber deposit formation, thereby reducing engine ORI and maintaining desired engine performance.
Abstract:
High energy (e.g., ultrasonic) mixing of a hydrocarbon feedstock and reactants comprised of an oxidation source, acid, and optional catalyst yields a liquid hydrocarbon product having increased cetane number. Ultrasonic mixing creates cavitation, which involves formation and violent collapse of micron-sized bubbles, which greatly increases reactivity of the reactants. Cavitation substantially increases cetane number compared to reactions carried out using conventional mixing processes, such as simple mechanical stirring. An aqueous mixture comprising water and acid can be pretreated with ozone or other oxidizer using ultrasonic cavitation prior to reacting the pretreated mixture with a hydrocarbon feedstock to promote cetane-increasing reactions. Controlling temperature inside the reactor promotes beneficial cetane-increasing reactions while minimizing formation of water-soluble sulfones.