Abstract:
Le câble comporte une âme centrale (3) et des torons extérieurs (2) formés d'au moins une couche de fils métalliques (21), notamment en acier, qui sont toronnés sur un coeur (22) en matériau synthétique, préférentiellement thermo-plastique, et ce selon un pas analogue que celui des torons (5,6) dont est formée l'âme (3), laquelle peut être entièrement métallique ou mixte. Ces câbles sont particulièrement destinés à une utilisation comme câble de levage, notamment câbles d'ascenseurs, ou autres installations multicâbles à transmission par adhérence.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
Provided are a steel cord for reinforcing rubber whose fatigue resistance is increased more than ever to enable achieving high durability that was not conventionally realized, and a pneumatic radial tire including the steel cord as a reinforcement member.In a steel cord for reinforcing rubber having a double-twist structure that includes a plurality of strands twisted together in the same direction with the same pitch and including a central structure and at least one outer layer, the central structure is composed of at least two strands being twisted around each other and each being composed of at least seven filaments being twisted together. In a steel cord for reinforcing rubber including at least three core strands being twisted together and at least six sheath strands being twisted together around the core strands, the core strands and the sheath strands are twisted in the same direction.
Abstract:
A steel cord (10) comprises eight or more strands (12, 14) twisted together. Each of the strands has a substantially same cord twisting direction and a substantially same cord twisting pitch in the steel cord, and each of the strands consists of two to five individual filaments (16, 18) twisted together. Such a multi-strand steel cord can be manufactured without having to twist the individual strands separately and beforehand.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
The invention relates to a hybrid rope comprising a core element, a first and a second metallic closed layer surrounding said core element. The core element includes a bundle or construction of synthetic yarns. The first metallic closed layer includes a plurality of first wirelike members helically twisted together with the core element in a first direction. The second metallic closed layer includes a plurality of second wirelike members helically twisted together with said core element and said first metallic closed layer in a second direction. The cross-sectional area of the core element is larger than the total cross-sectional area of the first and second metallic closed layers.
Abstract:
A bundle of logs (62) is unitized by means of one or more log bundling strands (10, 20, 42, 64, 70) and one or more sleeves (43, 66, 80). Each of the bundling strands has a leading end and a trailing end. Each of the bundling strands (10, 20, 42, 64, 70) is wound around the logs to form the bundle so that the leading end (44) and the trailing end (46) run adjacent to one another over an overlapping length L1 and form a pair. One or more sleeves (43, 66, 80) have a length L2 which is smaller than the overlapping length L1. Each of the one or more sleeves (43, 66, 80) are crimped on one pair of the leading ends (44) and the trailing ends (46) within the overlapping length L1. At least some of the bundling strands (10, 20, 42, 64, 70) are provided with indents (26, 36, 47) or protrusions (76) at the outer surface and/or at least some of the sleeves (80) are provided with non-cylindrical inner surfaces. The indents (26, 36, 47), protrusions (76) and/or non-cylindrical inner surfaces improve gripping between the strands (10, 20, 42, 64, 70) and the sleeves (43, 66, 80) and / or reduce the length L2 of the sleeves (43, 66, 80).
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
A tire for a vehicle wheel includes at least one metallic reinforcing cord comprising a single strand of elementary filaments preformed by sinusoidal waving and wound together. The number of filaments is greater than or equal to 3 and less than or equal to 8. A diameter of each filament is greater than or equal to 0.12 mm and less than or equal to 0.35 mm. A linear density of the at least one reinforcing cord is greater than or equal to 0.18 g/m and less than or equal to 4.0 g/m. A value of a breaking-stress integral of the at least one reinforcing cord is greater than or equal to 5,000 J/m3. In a two-wheeled vehicle, the at least one reinforcing cord in a tire for front-mounting may be distributed with a variable density while, in a tire for rear-mounting, the density may be constant.
Abstract translation:用于车轮的轮胎包括至少一个金属加强帘线,其包括通过正弦挥动预先形成并缠绕在一起的单股基本丝。 长丝的数量大于或等于3并且小于或等于8.每根细丝的直径大于或等于0.12mm且小于或等于0.35mm。 至少一个增强帘线的线密度大于或等于0.18g / m且小于或等于4.0g / m 2。 所述至少一个加强帘线的断裂应力积分的值大于或等于5,000J / m 3。 在两轮车辆中,用于前部安装的轮胎中的至少一个加强帘线可以以可变密度分布,而在用于后部安装的轮胎中,密度可以是恒定的。
Abstract:
The cable includes a substantially metallic central core (3) and outer strands (2) formed from at least one layer of metal wires (21), particularly steel wires, which are stranded over a core element (22) made from synthetic material, preferably a thermoplastic material, this being with a pitch similar to that of the strands (5,6) with which the core (3) is formed, it being possible for the latter to be entirely metallic or hybrid. These cables are intended particularly for use as a lifting cable, particularly elevator cables, or other multicable installations with transmission by means of adherence.