Abstract:
Certain types of riser tensioner arrangements include a high-pressure accumulator; a pusher-type hydraulic cylinder; a first flow path coupling the high-pressure accumulator with a first volume of the cylinder to enable a first high-pressure fluid to flow therebetween; and a second flow path coupling the high-pressure accumulator with a second volume of the cylinder to enable a second high-pressure fluid to flow therebetween. The piston includes a seat and a hollow extension that defines part of the second volume of the cylinder.
Abstract:
A fluid system comprises a pressure vessel with a baffle oriented at a skew angle. The baffle divides the vessel into first and second volumes. A first port is provided to introduce a pressurizing fluid into the first volume, and a second port is provided to circulate a working fluid within the second volume. A purge aperture is provided to purge the pressurizing fluid from the second volume across the baffle into the first volume, and a flow aperture is provided to transfer the working fluid through the baffle between the first and second volumes.
Abstract:
The invention relates to a hydraulic fluid accumulator (30) having a high-pressure chamber (32) and a low-pressure chamber (33), wherein the high-pressure chamber (32) provided with an equalizing volume (36) is disposed in the low-pressure chamber (33). Provided at the hydraulic fluid accumulator (30) is an external connection (34) for the equalizing volume (36), by means of which connection the equalizing volume (36) can be filled with a gas having a predefinable pressure.
Abstract:
A pressure fluid reservoir for supplying pressure fluid to a wheel slip regulating device that is accommodated in a vehicle has a hose membrane that can be partially emptied by suction. The degree of emptying is limited due to the installation of an inner support body that fluid can flow through. The radial expansion of the hose membrane is limited by an outer support element and by a porous casing encompassing the outer support element, which protects the pressure fluid reservoir from bursting in the event that the hose membrane is subjected to brake pressure. The inner support element, the outer support element, and the casing are flexible hoses and are connected in a pressure-tight fashion to tube line connections in such a way that the pressure fluid reservoir according to the invention is placed in the vehicle in the same way as a brake line.
Abstract:
A pulsation control device is constructed at least partially of a composite carbon (and/or other fibers)/epoxy exostructure having an oblong cylindrical or spheroidal shape, optionally with metallic portions or reinforcements, together with a non-metallic polymer non-load sharing liner. A pressure drop tube preferably extends from an opening through an exterior wall of the body into an interior space within the body.
Abstract:
Certain types of riser tensioner arrangements include a high-pressure accumulator; a pusher-type hydraulic cylinder; a first flow path coupling the high-pressure accumulator with a first volume of the cylinder to enable a first high-pressure fluid to flow therebetween; and a second flow path coupling the high-pressure accumulator with a second volume of the cylinder to enable a second high-pressure fluid to flow therebetween. The piston includes a seat and a hollow extension that defines part of the second volume of the cylinder.
Abstract:
A stretching system for stretch-blow molding machines for stretch blow molding containers from preforms, having at least one stretching unit which is hydraulically actuated for stretching a preform, with a hydraulic pressure tank which is at least partially filled with a hydraulic medium, for example water, and which is at least partially filled with a gaseous medium, for example compressed air; and wherein the stretching unit includes a stretching cylinder and a stretching piston, the stretching system being designed to conduct the hydraulic medium out of the hydraulic pressure tank to the stretching cylinder of the stretching unit, whereby the stretching piston in the stretching cylinder can be moved hydraulically.
Abstract:
A method for providing a controlled force to a dynamic system includes applying a force to a first actuator, transmitting the force from the first actuator to a second actuator through a closed fluid path containing a captured volume of fluid, and providing, via the second actuator, a controlled force to the dynamic system.