Abstract:
Embodiments of the present invention relate to compressed gas storage units, which in certain applications may be employed in conjunction with energy storage systems. Some embodiments may comprise one or more blow-molded polymer shells, formed for example from polyethylene terephthalate (PET) or ultra-high molecular weight polyethylene (UHMWPE). Embodiments of compressed gas storage units may be composite in nature, for example comprising carbon fiber filament(s) wound with a resin over a liner. A compressed gas storage unit may further include a heat exchanger element comprising a heat pipe or apparatus configured to introduce liquid directly into the storage unit for heat exchange with the compressed gas present therein.
Abstract:
A composite pressure vessel and method of manufacture. A composite pressure vessel comprises a multi-component mandrel that is integrated into the vessel, thereby becoming a permanent part of the pressure vessel, and comprises a cylinder and dome ends. Dome ends are made from custom molds with a fiber reinforced polymer. Components of the mandrel may be pieced together with a joining resin. The mandrel comprises a permeation barrier coated on the inside by spraying with elastomer resin, for example. Filaments are wound onto the mandrel, allowing any length of cylinder section to be made for the pressure vessel.
Abstract:
In a passenger automobile having a pressure tank which extends along the longitudinal vehicle axis, the tank comprises between its front and rear ends at least one conical section.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one end cap at a predetermined location. When subjected to overpressure it fails at the predetermined location. Other pressure relief devices include: a projecting member on the vessel surface, a weakened section of the passageway, a weakening or an absence of braiding material or hoop winding at a predetermined location on the vessel surface or along the passageway, a weakening or spreading of fibers in either the reinforcing panels or the flexible blankets covering the vessel.
Abstract:
A vacuum insulated container is constituted by a double-walled receptacle wherein the space between the walls is substantially evacuated to provide vacuum insulation. The outer wall is provided with an opening therein which is used during manufacture to provide access to the space between the walls so that the space may be evacuated. A stopper- or plug-like portion fills the opening after the container has been evacuated and is permanently joined or bonded to the surfaces of the opening thereby providing a sealing to maintain the vacuum in the space between the walls. The apparatus and method of manufacturing such a container include means for and the steps of: forming the opening by piercing the outer wall; providing a sealed chamber in which the container may be placed on a movable support after a sealing element is placed on the opening; evacuating the chamber; heating the container in the vicinity of the opening with the sealing element resting therein; and deforming the sealing element to cause it to completely seal the opening and bond to the container wall after it has been heated to a temperature permitting the material to flow.
Abstract:
This facility for storing compressed gases under water comprises a gas storage means comprising a hollow structure whereof a substantial portion of the surface (1) subject to buoyancy is rigid. It comprises a set of links (4) attached to the structure and converging towards an anchor point (6) and an anchoring system (7) engaging with the anchor point.
Abstract:
A cellular reservoir flexible pressure vessel (10) is formed as a series of closely packed tubes (15) fitted into a pair of opposing end caps (45, 50). The end caps have individual receptacles sized and shaped to receive tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway (85) for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one endcap at a predetermined location.
Abstract:
The present disclosure provides a pressure vessel 10 (sometimes known as a composite overwrapped pressure vessel or “COPV”) comprising carbon fiber 20 (such as carbon fiber 20 filaments) wrapped around a tank liner 30.
Abstract:
A fluid pressurization device 10 comprises a pressure container 12 and a first bladder 14, asecond bladder 16 and a sheet 18, that are located in the pressure container 12. The bladders14 and 16 have pipe connectors 32 and 40, respectively, for filling/discharging fluid from thebladders. The bladders 14 and 16 are located in the container 12 adjacent one another, withthe bladder 16 being folded in concertina fashion and the sheet 18 being wrapped around thebladder 16 to form a roll surrounding the folded bladder 16. In use, the bladder 14 is filled with a combustible fluid such as oxygen and the bladder 16 is filled with compressed air to a relativelyhigher pressure than the oxygen in the bladder 14 for pressurizing the oxygen contained therein.As oxygen is delivered from bladder 14, the sheet 18 unravels gradually, allowing the bladder 16to continue to exert a force on the bladder 14.