Abstract:
The invention relates to a storage device (1) for storing a gas (20), in particular for storing gaseous hydrogen, comprising a first chamber (30) for receiving the gas (20) and a locking device (32) for closing and opening a flow path (33) connected to the first chamber (30). The storage device (1) according to the invention comprises an adjustment unit (40) for volume change of the first chamber (30). The invention further relates to a gas storage unit (100) comprising the storage device (1) according to the invention and to a method for the at least partial filling or emptying of the gas storage unit (100).
Abstract:
Ein Treibstofftank für die gleichzeitige Lagerung von Flüssigkeiten, die durch ein Druckgas aus dem Tank ausgetrieben werden, und der insbesondere für einen Einsatz in Raumfahrzeugen geeignet ist, ist als Membran-Tank aufgebaut, wobei die Membran (3) aus einem Polymermaterial besteht. Die Membran ist mittels eines Federringes (2) in einer inneren Ausnehmung (4) der Außenwand (1) des Tanks gehaltert, wobei der Querschnitt des Federringes in etwa die Form eines C aufweist.
Abstract:
A submarine mass storage tank and a method for manufacturing and installing the same are disclosed. A submarine mass storage tank according to an embodiment of the present invention comprises: a body part with an internal storage space using a lightweight concrete of which the inner and outer sides are watertight-coated or plated; a ballast chamber placed on the top of the body part; and a separation unit inside the body part to partition the storage space into the top and bottom and to be vertically moved inside the storage space when a storage fluid is filled up.
Abstract:
A liquid storage tank comprising an outer container wherein the outer container is rigid and has at least one inner container disposed within the outer container. The at least one inner container contains at least one stored liquid which may be refilled from a surface vessel or host facility. The at least one inner container is flexible and pressure balanced while the volume of the outer container remains fixed, and the volume of the at least one inner containers is variable. Disposed on the outer container is a balance assembly containing an isolation valve, a check valve, and a flexible bladder. The balance assembly allows for the hydrostatic pressure to be maintained during chemical dosing and tank raising operations.
Abstract:
A liquid storage tank comprising an outer container wherein the outer container is rigid and has at least one inner container disposed within the outer container. The at least one inner container contains at least one stored liquid which may be refilled from a surface vessel or host facility. The at least one inner container is flexible and pressure balanced while the volume of the outer container remains fixed, and the volume of the at least one inner containers is variable. Disposed on the outer container is a balance assembly containing an isolation valve, a check valve, and a flexible bladder. The balance assembly allows for the hydrostatic pressure to be maintained during chemical dosing and tank raising operations.
Abstract:
A metallic positive expulsion fuel tank with stress free weld seams may include a first hemispherical shell with a first edge; a pressurized gas inlet attached to the first hemispherical shell; and a metallic cylinder with first and second edges attached to the first hemispherical shell along matching first edges by a first weld seam. The tank may also include a second hemispherical shell with a first edge attached to a fuel outlet fixture. An elastomeric diaphragm may be attached to the fuel outlet fixture on the second hemispherical shell. The second hemispherical shell may be attached to the second edge of the metallic cylinder along matching edges by a second weld seam thereby forming a positive expulsion fuel tank with two interior chambers separated by the elastomeric diaphragm. The first and second weld seams may be subjected to a localized post-weld stress relief heat treatment in which heating of the tank is confined to a distance of 2 inches (5.08 cm) of the first weld seam and a distance of 2 inches (5.08 cm) of the second weld seam such that the stresses in the first and second weld seams are relieved and the elastomeric diaphragm is unaffected by the heat treatment.
Abstract:
The operability of a fuel cell which uses a fuel cartridge housing a liquid fuel is improved. A fuel cartridge 1400 houses a liquid fuel 124. The fuel cartridge 1400 includes a gas-liquid separation film 1408 which divides a fuel housing section 1402 into a liquid housing chamber 1402a and a gas housing chamber 1402b. A fuel gas, which is the vaporized liquid fuel, is housed in the gas housing chamber 1402b. A gas exhaust pipe 1410 is connected to the gas housing chamber 1402b, and the fuel gas housed in the gas housing chamber 1402b is discharged to outside the fuel cartridge 1400 via a gas discharge port 1414.
Abstract:
A method for storing a gas. In some embodiments, the method includes positioning a gas storage system under water, the gas storage system having a gas inlet and injecting gas through the gas inlet into the gas storage system, wherein the gas is compressed. The method may further include venting the compressed gas through the at least one gas port to a storage facility.
Abstract:
An apparatus for compressing a gas and its uses are disclosed. The apparatus comprises a fixed-volume container having a hollow and a moveable element subdividing said hollow into a first variable-volume portion and a second variable-volume portion, the second variable-volume portion having an opening for introducing therein a hydraulic and/or pneumatic fluid under pressure, for causing an increase in the volume of said second variable-portion by moving said moveable element, thereby, consequently, decreasing the volume of the first variable-volume portion and compressing a gas contained therein.