Abstract:
A portable UV detection apparatus is disclosed. In one embodiment, the UV detection apparatus includes a UV detection device integrated with a skin type measuring device. A controller can be included in the apparatus that is in communication with the skin type measuring device and the UV detection device. The controller can provide information to the user regarding the amount of ultraviolet radiation present in the environment. In an alternative embodiment, the UV detection apparatus includes a UV detection device in conjunction with a light sensor. The light sensor can be configured to activate the UV detection device should light at a particular intensity be present in the environment. The UV detection device as described above can be configured to measure UVA radiation, UVB radiation, and/or UVC radiation.
Abstract:
PROBLEM TO BE SOLVED: To provide an optical sensor capable of detecting multidirectional light with one part. SOLUTION: The optical sensor has a plurality of detecting elements on a translucent substrate 101, where the detecting elements concerned are connected in parallel, a first transparent electrode 102 formed by translucent conducting layer, such as ITO (indium oxide-tin oxide alloy), indium oxide-zinc oxide alloy (In 2 O 3 -ZnO), and zinc oxide (ZnO), where a wiring 103 connected to the first transparent electrode 102, a first semiconductor film 104, a metal electrode 105 (polarization: minus), and a wiring 106 connected to the metal electrode 105 form a first detecting element, while the first transparent electrode 102 (polarization: plus), the wiring 103 connected to the first transparent electrode 102, a second semiconductor film 107, a second transparent electrode 108 (polarization: minus), and a wiring 109 connected to the second transparent electrode 108 form a second detecting element. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A compact, ultra violet light radiation sensing device intended be used by a human being, the device having a casing (1, 14) and including structural elements of: an ultraviolet light radiation sensor (6) with associated microprocessor (7) on a printed circuit board (4), a display (5) on the printed circuit board (4), a battery (10), a piezo-ceramic element (15) to act as a sound causing element upon an electric signal being applied thereto, an insulator (12), and a plurality of contact springs (8; 9; 11) enabling electrical contact from the battery (10) to the printed circuit board (4) and to the piezo-ceramic element (15). The the piezo-ceramic element (15) is upon an impulse force or a tapping applied onto the device casing configured to deliver an electric voltage signal to the microprocessor (7) via the printed circuit board (4) to wake up the microprocessor from a power saving sleep mode and/or for user input to the microprocessor (7) as a function of tapping sequences interpretable by the microprocessor (7).
Abstract:
A sterilization system consisting of a mobile emitter, a sensing subsystem and a data logging subsystem is described. The emitter has one or more UV emitting lamps or devices. The sensing system comprises at least one remote UV sensor and at least one door sensor. The door sensor comprises a safety shut off door detector and may contain an emergency stop detector and arming detector to protect people from being exposed to UV energy. The system has a remote control for starting, stopping and setting system parameters which include but are not limited to: treatment time, dosage, room size, room number, unit number, floor, facility name, operator name, operator identification number, password, default dosage values, dosage, and patient identification number. The number of treatments per unit of time can be maximized because of the use of incident light measurement.
Abstract:
L'invention concerne essentiellement un système (100) pour gérer l'énergie consommée par un dosimètre (110) portatif comprenant au moins un capteur (126, 128) de rayonnements ultraviolets (R), ledit système comportant : - des moyens (122, 162) pour déterminer l'heure à la position géographique du dosimètre, et - des moyens de contrôle (112) aptes à : - mettre en veille le dosimètre (110) si au moins une condition de mise en veille d'un ensemble de conditions de mise en veille est satisfaite, et - activer le dosimètre (110) si chaque condition d'un ensemble de conditions d'activation est satisfaite.
Abstract:
The invention relates to a miniaturized optoelectronic system for producing static or moving images of scenes or individual objects (11) and for determining and evaluating the spectral properties of the objects (11) within a scene or of individually imaged objects (11). According to the invention, a system of this type comprises optical components and beam paths for producing static of moving images of a scene or of an individual object (11), optical components and beam paths for determining the spectral properties of one or more objects (11) contained in the scene or of the individual object (11), at least one image sensor as an optoelectronic converter, electronic components for processing the output signals of the image sensor, an information output unit designed to present the results in a sensory manner, preferably for presenting the spectral properties in association with the objects (11) in a visually perceptible manner, and means for supplying power to electronic components, wherein a design of the system in the form of a hand-held device, also referred to as a handheld, is provided for.
Abstract:
A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space. In addition, the variable transmission rate may be further dependent upon a rate of change of the total light intensity in the space.
Abstract:
A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.