Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
Apparatus for inserting and removing several filters from an optical path (16) and for determining at all times the instantaneous positional relationship of each filter with respect to the optical path includes a set of filters (36) mounted on a carrier (22) which is attached to a resonant piezoelectric system, and further includes reference tracks (42) also located on the carrier and extending in the direction of the oscillatory motion and including a sequence of binary indicia progressing in the direction of the oscillatory motion. The reference tracks are read optically to produce a series of binary electrical signals which are processed to yield the instantaneous position of the carrier and filters with respect to a fixed optical path.
Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
A spectrometer includes an illuminating section; a receiving section configured to detect radiation reflected from an object including an optically inhomogeneous scattering medium; a hardware section configured to obtain a solution of an inverse problem to reconstruct an absorption spectrum of the optically inhomogeneous scattering medium, wherein the illuminating section includes at least one light-emitting diode source, a radiation spectral curve of which is divided, by at least two spectral filters having different spectral transmission curves, into at least two spectral regions, to form an equivalent radiation spectrum from at least two spectral sources, and wherein the hardware section applies the solution of the inverse problem based on information about a spectral content of the radiation of the illuminating section, a signal obtained in a form of a response from the optically inhomogeneous scattering medium, and a spectral sensitivity curve of the receiving section.
Abstract:
A photometric device (1) measuring light emitted from a measuring object such as a display (2) includes two types of filters including interference filters (20X, 20Y, and 20Z) and an LVF (21), a disk (22) supporting the interference filters and the LVF, a motor (23) rotatably drive the disk to cause the light emitted from the measuring object to scan the interference filters and the LVF sequentially, a photoreceptor (13) converting light passed through the interference filters and light passed through the LVF to an electrical signal, a photometric controller (14) outputting photometric information based on the electrical signal of the light passed through the interference filters and converted by the photoreceptor and the electrical signal of the light passed through the LVF and converted by the photoreceptor.