Abstract:
A force and torque converter (1) is provided that senses force and torque applied to the device (1). The converter (1) includes a base (10), a grip (9), resilient connection members (2, 4, 6) that extend radially and coplanarly from a central hub (8), located within the grip (9), and that connect to the grip, and sensing mechanisms to sense the displacement of the connection members (2, 4, 6). The displacements are resolved to determine the force and torque that is applied to the device (1), with respect to a Cartesian coordinate system.
Abstract:
Appareil pour mesurer les contraintes en un point donné d'un objet, comprenant: un dispositif pour appliquer une charge à variation cyclique de période T sur ledit objet; un détecteur qui enregistre et mesure le rayonnement thermique depuis ce point et sur un intervalle-échantillon de temps t, t étant inférieur à T, un moyen qui détermine la phase du premier intervalle t par rapport à la variation cyclique du rayonnement thermique émis par ledit point en réaction à la charge appliquée et qui, à partir des valeurs du rayonnement thermique et de la phase ainsi enregistrées et mesurées, calcule la contrainte en ce point.
Abstract:
A stress properties measurement method for measuring properties of stresses generated in a structure includes acquiring, from a first imaging device, a plurality of thermal images corresponding to temperatures of a surface of the structure, the plurality of thermal images being different in imaging time from each other, generating a stress distribution image corresponding to each of the plurality of thermal images, acquiring a stress value of a first section that is smaller in stress gradient than a predetermined value and respective stress values of a plurality of second sections where stresses are concentrated for the stress distribution images, and deriving correlation properties of stresses at a section of the structure based on the stress value of the first section acquired and the respective stress values of the plurality of second sections acquired.
Abstract:
A stress distribution image processing device including:
a processing unit configured to:
designate a normalization region which includes a portion of stress equal to or larger than a predetermined threshold value in a screen of a stress distribution image of a target object; and normalize pixels in the normalization region based on stress values in the normalization region to obtain a normalized image.
Abstract:
A witness material for monitoring an environmental history of an object may include a material containing a dye of a type that fluoresces in response to actinic radiation in one or both of a shift in color and a change in intensity when subjected to a predetermined stress above a predetermined level; and the material forming a coating on one or more of an outer container for the object, an inner container for the object, a tape that is applied to an outer container for the object, a tape that is applied to an inner container for the object, a shrink wrap enclosing the object, an outer surface of the object, and an inner surface of the object.
Abstract:
Prism-coupling systems and methods for characterizing large depth-of-layer waveguides formed in glass substrates are disclosed. One method includes making a first measurement after a first ion-exchange process that forms a deep region and then performing a second measurement after a second ion-exchange process that forms a shallow region. Light-blocking features are arranged relative to the prism to produce a mode spectrum where the contrast of the mode lines for the strongly coupled low-order modes is improved at the expense of loss of resolution for measuring characteristics of the shallow region. Standard techniques for determining the compressive stress, the depth of layer or the tensile strength of the shallow region are then employed. A second measurement can be made using a near-IR wavelength to measure characteristics of the deeper, first ion-exchange process. Systems and methods of measuring ion-exchanged samples using shape control are also disclosed.
Abstract:
The invention is a sensor device comprising a carrier element (24), at least one light emitting element (20) arranged on the carrier element (24), at least one light detecting element (22) arranged on the carrier element (24), a cover layer (12) reflecting at least one part of the light emitted by the light emitting element (20) to the at least one light detecting element (22), and at least one transparent filler element (16, 18) filling at least partly the space between the carrier element (24) and the cover layer (12) and being made of a flexible material.
Abstract:
A device for detecting the posture a finger or forces applied to a finger, the finger having a fingernail illuminated by light, comprises at least one photodetector for measuring a change in light reflected by an area of the finger beneath the fingernail in response to the posture of the finger or forces applied to the finger. The photodetector provides a signal corresponding to the change in light reflected. The device also includes a processor for receiving the signal and determining whether the change corresponds to a specified condition. The photodetector may be enclosed in a housing and coupled to the fingernail.
Abstract:
A device for detecting contact pressure applied to a finger, the finger having a fingernail illuminated by light, comprises at least one photodetector for measuring a change in light reflected by an area of the finger beneath the fingernail in response to the contact pressure applied to the finger. The photodetector provides a signal corresponding to the change in light reflected. The device also includes a processor for receiving the signal and determining whether the change corresponds to a specified condition. The photodetector may be enclosed in a housing and coupled to the fingernail.
Abstract:
A stress detection apparatus is provided. A piece of semiconductor grade, ngle crystal silicon mounted on the material is illuminated by an infrared source with radiation having a wavelength in the range of 800-1100 nanometers. An infrared detector monitors the photoelastic effects of illuminating the single crystal silicon with the radiation.