Abstract:
A method of monitoring the surface of a sample under test is provided and the method comprises the steps of: illuminating the surface with light (20) polarised in a first direction; viewing light reflected from the surface through a polarising filter (27) arranged at 90° to the first direction, wherein the surface of the sample under test is provided with a marked area where diffuse reflection of the incident polarised light will occur in order to improve the contrast between the marked area and the surface of the sample under text.
Abstract:
An apparatus (10) for inspecting the surface of an object S moving in the direction of travel (23) relative to the apparatus comprises a modular sensing head assembly (11) including a plurality of sensing head modules (12, 13), each of which includes a number of sensing stations (16 - 21). Each sensing station includes a light source (77, 81, 84) for generating a line of light extending across substantially the width of the surface of the object and a plurality of optical detector means for detecting light scattered from the line of light by the surface of the object. The optical detectors are positioned and oriented to receive scattered light scattered along paths lying in detection planes which are perpendicular to each other and perpendicular to the surface of the object. Signal processing electronics are provided to convert the light received by the detectors into analog signals which are multiplexed, converted to digital signals, filtered and then compared to preselected thresholds to determine the existence of any defects in the surface.
Abstract:
PROBLEM TO BE SOLVED: To realize a light source capable of accurately measuring particle density without disturbing a plasma state. SOLUTION: The light source is provided with a tubular case 12, a cooling medium circulating channel 30 fitted along an inner wall of the case for circulating a cooling medium, a lens 50 arranged at a tip of the case, a first electrode 44 as well as a second electrode 45 arranged in front of the lens, inside the case, vertical to an axis of the case and in parallel with each other, and an insulating spacer 46 arranged between them. It is also provided with a hole 47 penetrating a center part of the insulating spacer and the second electrode in an axis direction, and a discharge gas circulating channel introducing discharge gas toward a rear face of the lens along the inner wall of the cooling medium circulating channel, made reflected at the lens, and circulated through the hole. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
L'invention concerne un procédé de contrôle du formage de verre plat par écoulement de verre fondu sur une nappe d'étain liquide présent dans une cuve de formage dans lequel on mesure une grandeur caractéristique du formage au-dessus de la surface du verre en cours de formage à l'aide de faisceaux générés par au moins un analyseur basé sur la spectroscopie d'absorption, dans lequel les faisceaux de lumière générés par l'analyseur forment un réseau au-dessus de la surface du verre. L'invention concerne également un dispositif utilisable pour la mise en œuvre de ce procédé comprenant un bras supportant un caisson comprenant un moyen de rétroréflexion capable de recevoir un faisceau de lumière et de le renvoyer dans le sens opposé parallèlement au chemin optique incident.
Abstract:
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Messung einer Konzentration mindestens einer Komponente eines Prozessgases mit einem Laser (2a), wobei der Strahlengang des Lasers (2a) ein das Prozessgas enthaltendes Volumen (1) durchquert. Die Erfindung ist dadurch gekennzeichnet, dass der Strahlengang teilweise frei durch das Prozessgas führt und teilweise von dem Prozessgas abgeschirmt verläuft, wobei nur der Teil des Strahlengangs, der frei durch das Prozessgas führt als Messstrecke (4) bezeichnet wird und zu einer laserspektroskopischen Messung der Konzentration herangezogen wird, bei der genau eine Absorptionslinie bestimmt wird.
Abstract:
The present invention relates to a facility for chemically analyzing a bath (20) heated to high temperature, provided with a LIBS laser-plasma spectroscopy analysis head, comprising a high-energy pulsed laser (2) capable of remotely emitting a light beam focused into a region of the bath (20) having a chemical composition to be determined, in order to create a plasma locally, and comprising a spectrometer (13) for spectral analysis of the light emitted by said plasma, characterized in that the laser (2) is offset laterally thanks to a tube (3), which extends it and terminates in a lens for focusing the laser beam (4), and thanks to a first optical fibre (5), a first end (5A) of which is located at said focusing lens (4).
Abstract:
An apparatus (10) for inspecting the surface of an object S moving in the direction of travel (23) relative to the apparatus comprises a modular sensing head assembly (11) including a plurality of sensing head modules (12, 13), each of which includes a number of sensing stations (16 - 21). Each sensing station includes a light source (77, 81, 84) for generating a line of light extending across substantially the width of the surface of the object and a plurality of optical detector means for detecting light scattered from the line of light by the surface of the object. The optical detectors are positioned and oriented to receive scattered light scattered along paths lying in detection planes which are perpendicular to each other and perpendicular to the surface of the object. Signal processing electronics are provided to convert the light received by the detectors into analog signals which are multiplexed, converted to digital signals, filtered and then compared to preselected thresholds to determine the existence of any defects in the surface.
Abstract:
Appareil (10) servant à examiner la surface d'un objets se déplaçant dans un sens de parcours (23) par rapport à l'appareil. Ledit appareil (10) est constitué d'un ensemble tête de détection (11) modulaire comprenant une pluralité de modules (12, 13) de tête de détection qui comportent chacun plusieurs unités de détection (16, 21). Chaque unité de détection comprend une source de lumière (77, 81, 84) qui génère un rayon de lumière s'étendant pratiquement sur la largeur de la surface de l'objet, et plusieurs détecteurs optiques qui détectent la lumière du rayon de lumière qui est dispersée par la surface de l'objet. Les détecteurs optiques sont positionnés et orientés de manière à recevoir la lumière dispersée selon des trajectoires situées dans des plans de détection qui sont perpendiculaires entre eux et par rapport à la surface de l'objet. Des systèmes électroniques de traitement des signaux sont prévus pour transformer la lumière reçue par les détecteurs en signaux analogiques qui sont multiplexés, convertis en signaux numériques, filtrés et ensuite comparés à des seuils présélectionnés pour déterminer la présence d'un quelconque défaut dans cette surface.
Abstract:
The 13 C urea breath test has been established in the area of clinical diagnostics for detecting Helicobacter pylori infections. In known methods for detecting Helicobacter pylori, each method step corresponds to a fixed specified time. This proves to be disadvantageous, however, in particular when carrying out a large number of such examinations. Thus, the aim of the invention is to provide a method with which a quick detection of Helicobacter pylori in a gaseous sample can be implemented. According to the invention, the 13 C content is measured only until a minimum number of measurement values of the 13 C content meets a specified standard deviation.