Abstract:
A surface inspecting apparatus that inspects a surface of a material based on an intensity of a reflected light from the surface includes an illuminating unit that illuminates a light on the surface; and a detecting unit that detects the intensity of the reflected light from the surface. The light has an intensity distribution in which an intensity of the light is higher approaching the surface.
Abstract:
An apparatus and method for imaging biochip spots in which a linearly spaced array of micro-lenses has a set of optical fibers which are associated with each micro-lens to receive and transmit the image magnified by the micro-lens. The micro-lenses are spaced to that of the biochip spots so that the microlens array can be positioned over a selected group of biochip spots, one for each micro-lens. The microlens array can be translated to be over selected groups of biochip spots. A detector and user devise such as a computer and a screen are used to record and view the collected images.
Abstract:
An apparatus images a surface. An imager stage linearly translates the surface in a first direction. A light path has a first end defining an input aperture perpendicular to the first direction and parallel to the surface, and a second end defining an output aperture. A plurality of radiation beams linearly scan and interact in time-multiplexed alternating turns with the surface below the input aperture to produce a time-multiplexed light signal that is collected by the input aperture and transmitted by the light path to the output aperture. A photodetector arrangement detects the light signal at the output aperture. A processor processes the detected time-multiplexed light.
Abstract:
An apparatus images a surface. An imager stage has a planar surface for supporting a sample. A fiber optic bundle has a first end of parallel first fiber ends that are arranged to define an input aperture for viewing the sample on the imager stage. A distal bundle end is arranged to define an output aperture disposed away from the imager stage. A scanning radiation source scans a radiation beam along a path that is perpendicular to the sample on the imager stage. The input aperture of the fiber optic bundle receives a light signal that is produced by the radiation source scan of the imager stage sample. The light signal is transmitted to the bundle output aperture. A photodetector detects the light signal at the distal bundle end, and a processor processes the detected light.
Abstract:
An apparatus and method for imaging biochip spots in which a linearly spaced array of micro-lenses has a set of optical fibers which are associated with each micro-lens to receive and transmit the image magnified by the micro-lens. The micro-lenses are spaced to that of the biochip spots so that the microlens array can be positioned over a selected group of biochip spots, one for each micro-lens. The microlens array can be translated to be over selected groups of biochip spots. A detector and user devise such as a computer and a screen are used to record and view the collected images.
Abstract:
A particle imager and method for imaging particles on surfaces of substrates (19). A reflective suface (17) is scanned by a collimated light beam (57) and particles on the surface are detected by the scattered light caused by the particles. During a scan path (81) the intensity of the scattered light is measured forming intensity traces (91) and location addresses for the detected particles. Data from each scan path is stored in memory. A three-dimensional surface map (95) is formed from the data stored in memory. The intensity traces for a particle (71) when combined together in the surface map form an intensity profile (97, 99, 101) or signature of the particle. These signatures may then be compared to known particle signatures to determine characteristics of the detected particle.
Abstract:
Photovoltaic thin film quality control is obtained where the thin film is supported by a support and a section of the film is illuminated by a polychromatic illumination source. The source forms on the thin film a continuous illuminated line. Discrete sampled points located on the illuminated line are imaged onto a two dimensional optical switch. A concordance look-up-table between the coordinates of the above sampled points on the thin film and their coordinates on the two dimensional optical switch are generated. The spectral composition of the illumination reflected by the sampled points is determined and photovoltaic thin film parameters applicable to the quality control are derived from the spectral composition of reflected or transmitted by the photovoltaic thin film illumination.